Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-\left(\frac{1}{2}-\left(-\frac{1}{\sqrt{9}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{-\left(\frac{1}{2}-\left(-\frac{1}{3}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{-\left(\frac{1}{2}+\frac{1}{3}+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Ko te tauaro o -\frac{1}{3} ko \frac{1}{3}.
\frac{-\left(\frac{5}{6}+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tāpirihia te \frac{1}{2} ki te \frac{1}{3}, ka \frac{5}{6}.
\frac{-\left(\frac{5}{6}+\left(-2\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{-\left(\frac{5}{6}-8+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
\frac{-\left(-\frac{43}{6}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tangohia te 8 i te \frac{5}{6}, ka -\frac{43}{6}.
\frac{-\left(-\frac{43}{6}+2\left(4-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaitia te pūtakerua o 16 kia tae ki 4.
\frac{-\left(-\frac{43}{6}+2\times \frac{7}{2}\right)}{\frac{3}{4}}
Tangohia te \frac{1}{2} i te 4, ka \frac{7}{2}.
\frac{-\left(-\frac{43}{6}+7\right)}{\frac{3}{4}}
Whakareatia te 2 ki te \frac{7}{2}, ka 7.
\frac{-\left(-\frac{1}{6}\right)}{\frac{3}{4}}
Tāpirihia te -\frac{43}{6} ki te 7, ka -\frac{1}{6}.
\frac{\frac{1}{6}}{\frac{3}{4}}
Ko te tauaro o -\frac{1}{6} ko \frac{1}{6}.
\frac{1}{6}\times \frac{4}{3}
Whakawehe \frac{1}{6} ki te \frac{3}{4} mā te whakarea \frac{1}{6} ki te tau huripoki o \frac{3}{4}.
\frac{2}{9}
Whakareatia te \frac{1}{6} ki te \frac{4}{3}, ka \frac{2}{9}.