Aromātai
-\frac{2\sqrt{2}}{3}-\frac{4\sqrt{5}}{15}+\frac{4}{3}\approx -0.205760502
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-2\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(4-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Tātaitia te pūtakerua o 16 kia tae ki 4.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\times \frac{7}{2}\right)}{\frac{3}{4}}
Tangohia te \frac{1}{2} i te 4, ka \frac{7}{2}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+7\right)}{\frac{3}{4}}
Whakareatia te 2 ki te \frac{7}{2}, ka 7.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1\right)}{\frac{3}{4}}
Tāpirihia te -8 ki te 7, ka -1.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1}{\frac{3}{4}}
Hei kimi i te tauaro o \frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1, kimihia te tauaro o ia taurangi.
\frac{\left(-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1\right)\times 4}{3}
Whakawehe -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 ki te \frac{3}{4} mā te whakarea -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 ki te tau huripoki o \frac{3}{4}.
\frac{\left(-\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{5}\right)+1\right)\times 4}{3}
Whakareatia te -1 ki te -1, ka 1.
\frac{\left(-\left(\frac{5\sqrt{2}}{10}+\frac{2\sqrt{5}}{10}\right)+1\right)\times 4}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 5 ko 10. Whakareatia \frac{\sqrt{2}}{2} ki te \frac{5}{5}. Whakareatia \frac{\sqrt{5}}{5} ki te \frac{2}{2}.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+1\right)\times 4}{3}
Tā te mea he rite te tauraro o \frac{5\sqrt{2}}{10} me \frac{2\sqrt{5}}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+\frac{10}{10}\right)\times 4}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{10}{10}.
\frac{\frac{-\left(5\sqrt{2}+2\sqrt{5}\right)+10}{10}\times 4}{3}
Tā te mea he rite te tauraro o -\frac{5\sqrt{2}+2\sqrt{5}}{10} me \frac{10}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4}{3}
Mahia ngā whakarea i roto o -\left(5\sqrt{2}+2\sqrt{5}\right)+10.
\frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3}
Tuhia te \frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4 hei hautanga kotahi.
\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10\times 3}
Tuhia te \frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3} hei hautanga kotahi.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{3\times 5}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{15}
Whakareatia te 3 ki te 5, ka 15.
\frac{-10\sqrt{2}-4\sqrt{5}+20}{15}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te -5\sqrt{2}-2\sqrt{5}+10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}