Whakaoti mō x
x=1800
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-x\times \frac{1}{10}-\left(x-x\times \frac{10}{100}\right)\times \frac{5}{100}=1539
Whakahekea te hautanga \frac{10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{9}{10}x-\left(x-x\times \frac{10}{100}\right)\times \frac{5}{100}=1539
Pahekotia te x me -x\times \frac{1}{10}, ka \frac{9}{10}x.
\frac{9}{10}x-\left(x-x\times \frac{1}{10}\right)\times \frac{5}{100}=1539
Whakahekea te hautanga \frac{10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{9}{10}x-\frac{9}{10}x\times \frac{5}{100}=1539
Pahekotia te x me -x\times \frac{1}{10}, ka \frac{9}{10}x.
\frac{9}{10}x-\frac{9}{10}x\times \frac{1}{20}=1539
Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{9}{10}x-\frac{9\times 1}{10\times 20}x=1539
Me whakarea te \frac{9}{10} ki te \frac{1}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{10}x-\frac{9}{200}x=1539
Mahia ngā whakarea i roto i te hautanga \frac{9\times 1}{10\times 20}.
\frac{171}{200}x=1539
Pahekotia te \frac{9}{10}x me -\frac{9}{200}x, ka \frac{171}{200}x.
x=1539\times \frac{200}{171}
Me whakarea ngā taha e rua ki te \frac{200}{171}, te tau utu o \frac{171}{200}.
x=\frac{1539\times 200}{171}
Tuhia te 1539\times \frac{200}{171} hei hautanga kotahi.
x=\frac{307800}{171}
Whakareatia te 1539 ki te 200, ka 307800.
x=1800
Whakawehea te 307800 ki te 171, kia riro ko 1800.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}