Aromātai
x^{2}-13x-70
Whakaroha
x^{2}-13x-70
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\left(x-9\right)\left(2x+5\right)}{2x+5}+\frac{-x^{2}-25}{2x+5}\right)\left(2x+5\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x-9 ki te \frac{2x+5}{2x+5}.
\frac{\left(x-9\right)\left(2x+5\right)-x^{2}-25}{2x+5}\left(2x+5\right)
Tā te mea he rite te tauraro o \frac{\left(x-9\right)\left(2x+5\right)}{2x+5} me \frac{-x^{2}-25}{2x+5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x^{2}+5x-18x-45-x^{2}-25}{2x+5}\left(2x+5\right)
Mahia ngā whakarea i roto o \left(x-9\right)\left(2x+5\right)-x^{2}-25.
\frac{x^{2}-13x-70}{2x+5}\left(2x+5\right)
Whakakotahitia ngā kupu rite i 2x^{2}+5x-18x-45-x^{2}-25.
x^{2}-13x-70
Me whakakore te 2x+5 me te 2x+5.
\left(\frac{\left(x-9\right)\left(2x+5\right)}{2x+5}+\frac{-x^{2}-25}{2x+5}\right)\left(2x+5\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x-9 ki te \frac{2x+5}{2x+5}.
\frac{\left(x-9\right)\left(2x+5\right)-x^{2}-25}{2x+5}\left(2x+5\right)
Tā te mea he rite te tauraro o \frac{\left(x-9\right)\left(2x+5\right)}{2x+5} me \frac{-x^{2}-25}{2x+5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x^{2}+5x-18x-45-x^{2}-25}{2x+5}\left(2x+5\right)
Mahia ngā whakarea i roto o \left(x-9\right)\left(2x+5\right)-x^{2}-25.
\frac{x^{2}-13x-70}{2x+5}\left(2x+5\right)
Whakakotahitia ngā kupu rite i 2x^{2}+5x-18x-45-x^{2}-25.
x^{2}-13x-70
Me whakakore te 2x+5 me te 2x+5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}