Whakaoti mō x
x=8
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x-24\right)x=x\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te 4.
4x^{2}-24x=x\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 4x-24 ki te x.
4x^{2}-24x-x\times 8=0
Tangohia te x\times 8 mai i ngā taha e rua.
4x^{2}-32x=0
Pahekotia te -24x me -x\times 8, ka -32x.
x\left(4x-32\right)=0
Tauwehea te x.
x=0 x=8
Hei kimi otinga whārite, me whakaoti te x=0 me te 4x-32=0.
\left(4x-24\right)x=x\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te 4.
4x^{2}-24x=x\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 4x-24 ki te x.
4x^{2}-24x-x\times 8=0
Tangohia te x\times 8 mai i ngā taha e rua.
4x^{2}-32x=0
Pahekotia te -24x me -x\times 8, ka -32x.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -32 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±32}{2\times 4}
Tuhia te pūtakerua o te \left(-32\right)^{2}.
x=\frac{32±32}{2\times 4}
Ko te tauaro o -32 ko 32.
x=\frac{32±32}{8}
Whakareatia 2 ki te 4.
x=\frac{64}{8}
Nā, me whakaoti te whārite x=\frac{32±32}{8} ina he tāpiri te ±. Tāpiri 32 ki te 32.
x=8
Whakawehe 64 ki te 8.
x=\frac{0}{8}
Nā, me whakaoti te whārite x=\frac{32±32}{8} ina he tango te ±. Tango 32 mai i 32.
x=0
Whakawehe 0 ki te 8.
x=8 x=0
Kua oti te whārite te whakatau.
\left(4x-24\right)x=x\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te 4.
4x^{2}-24x=x\times 8
Whakamahia te āhuatanga tohatoha hei whakarea te 4x-24 ki te x.
4x^{2}-24x-x\times 8=0
Tangohia te x\times 8 mai i ngā taha e rua.
4x^{2}-32x=0
Pahekotia te -24x me -x\times 8, ka -32x.
\frac{4x^{2}-32x}{4}=\frac{0}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{32}{4}\right)x=\frac{0}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-8x=\frac{0}{4}
Whakawehe -32 ki te 4.
x^{2}-8x=0
Whakawehe 0 ki te 4.
x^{2}-8x+\left(-4\right)^{2}=\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=16
Pūrua -4.
\left(x-4\right)^{2}=16
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=4 x-4=-4
Whakarūnātia.
x=8 x=0
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}