Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-7x+10=10
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}-7x+10-10=0
Tangohia te 10 mai i ngā taha e rua.
x^{2}-7x=0
Tangohia te 10 i te 10, ka 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -7 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±7}{2}
Tuhia te pūtakerua o te \left(-7\right)^{2}.
x=\frac{7±7}{2}
Ko te tauaro o -7 ko 7.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{7±7}{2} ina he tāpiri te ±. Tāpiri 7 ki te 7.
x=7
Whakawehe 14 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{7±7}{2} ina he tango te ±. Tango 7 mai i 7.
x=0
Whakawehe 0 ki te 2.
x=7 x=0
Kua oti te whārite te whakatau.
x^{2}-7x+10=10
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}-7x=10-10
Tangohia te 10 mai i ngā taha e rua.
x^{2}-7x=0
Tangohia te 10 i te 10, ka 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
Whakarūnātia.
x=7 x=0
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.