Whakaoti mō x
x=3\sqrt{28239}+11\approx 515.133910782
x=11-3\sqrt{28239}\approx -493.133910782
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-35\right)\left(x+13\right)=253575
Tangohia te 25 i te 38, ka 13.
x^{2}-22x-455=253575
Whakamahia te āhuatanga tuaritanga hei whakarea te x-35 ki te x+13 ka whakakotahi i ngā kupu rite.
x^{2}-22x-455-253575=0
Tangohia te 253575 mai i ngā taha e rua.
x^{2}-22x-254030=0
Tangohia te 253575 i te -455, ka -254030.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-254030\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -22 mō b, me -254030 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-254030\right)}}{2}
Pūrua -22.
x=\frac{-\left(-22\right)±\sqrt{484+1016120}}{2}
Whakareatia -4 ki te -254030.
x=\frac{-\left(-22\right)±\sqrt{1016604}}{2}
Tāpiri 484 ki te 1016120.
x=\frac{-\left(-22\right)±6\sqrt{28239}}{2}
Tuhia te pūtakerua o te 1016604.
x=\frac{22±6\sqrt{28239}}{2}
Ko te tauaro o -22 ko 22.
x=\frac{6\sqrt{28239}+22}{2}
Nā, me whakaoti te whārite x=\frac{22±6\sqrt{28239}}{2} ina he tāpiri te ±. Tāpiri 22 ki te 6\sqrt{28239}.
x=3\sqrt{28239}+11
Whakawehe 22+6\sqrt{28239} ki te 2.
x=\frac{22-6\sqrt{28239}}{2}
Nā, me whakaoti te whārite x=\frac{22±6\sqrt{28239}}{2} ina he tango te ±. Tango 6\sqrt{28239} mai i 22.
x=11-3\sqrt{28239}
Whakawehe 22-6\sqrt{28239} ki te 2.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
Kua oti te whārite te whakatau.
\left(x-35\right)\left(x+13\right)=253575
Tangohia te 25 i te 38, ka 13.
x^{2}-22x-455=253575
Whakamahia te āhuatanga tuaritanga hei whakarea te x-35 ki te x+13 ka whakakotahi i ngā kupu rite.
x^{2}-22x=253575+455
Me tāpiri te 455 ki ngā taha e rua.
x^{2}-22x=254030
Tāpirihia te 253575 ki te 455, ka 254030.
x^{2}-22x+\left(-11\right)^{2}=254030+\left(-11\right)^{2}
Whakawehea te -22, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -11. Nā, tāpiria te pūrua o te -11 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-22x+121=254030+121
Pūrua -11.
x^{2}-22x+121=254151
Tāpiri 254030 ki te 121.
\left(x-11\right)^{2}=254151
Tauwehea x^{2}-22x+121. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-11\right)^{2}}=\sqrt{254151}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-11=3\sqrt{28239} x-11=-3\sqrt{28239}
Whakarūnātia.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
Me tāpiri 11 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}