Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
x-2y-2x-\left(-3y\right)+x-y
Hei kimi i te tauaro o 2x-3y, kimihia te tauaro o ia taurangi.
x-2y-2x+3y+x-y
Ko te tauaro o -3y ko 3y.
-x-2y+3y+x-y
Pahekotia te x me -2x, ka -x.
-x+y+x-y
Pahekotia te -2y me 3y, ka y.
y-y
Pahekotia te -x me x, ka 0.
0
Pahekotia te y me -y, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}