Whakaoti mō x
x=\frac{3\sqrt{5}}{5}+1\approx 2.341640786
x=-\frac{3\sqrt{5}}{5}+1\approx -0.341640786
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(180x-360\right)x=144
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 180.
180x^{2}-360x=144
Whakamahia te āhuatanga tohatoha hei whakarea te 180x-360 ki te x.
180x^{2}-360x-144=0
Tangohia te 144 mai i ngā taha e rua.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\times 180\left(-144\right)}}{2\times 180}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 180 mō a, -360 mō b, me -144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-360\right)±\sqrt{129600-4\times 180\left(-144\right)}}{2\times 180}
Pūrua -360.
x=\frac{-\left(-360\right)±\sqrt{129600-720\left(-144\right)}}{2\times 180}
Whakareatia -4 ki te 180.
x=\frac{-\left(-360\right)±\sqrt{129600+103680}}{2\times 180}
Whakareatia -720 ki te -144.
x=\frac{-\left(-360\right)±\sqrt{233280}}{2\times 180}
Tāpiri 129600 ki te 103680.
x=\frac{-\left(-360\right)±216\sqrt{5}}{2\times 180}
Tuhia te pūtakerua o te 233280.
x=\frac{360±216\sqrt{5}}{2\times 180}
Ko te tauaro o -360 ko 360.
x=\frac{360±216\sqrt{5}}{360}
Whakareatia 2 ki te 180.
x=\frac{216\sqrt{5}+360}{360}
Nā, me whakaoti te whārite x=\frac{360±216\sqrt{5}}{360} ina he tāpiri te ±. Tāpiri 360 ki te 216\sqrt{5}.
x=\frac{3\sqrt{5}}{5}+1
Whakawehe 360+216\sqrt{5} ki te 360.
x=\frac{360-216\sqrt{5}}{360}
Nā, me whakaoti te whārite x=\frac{360±216\sqrt{5}}{360} ina he tango te ±. Tango 216\sqrt{5} mai i 360.
x=-\frac{3\sqrt{5}}{5}+1
Whakawehe 360-216\sqrt{5} ki te 360.
x=\frac{3\sqrt{5}}{5}+1 x=-\frac{3\sqrt{5}}{5}+1
Kua oti te whārite te whakatau.
\left(180x-360\right)x=144
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 180.
180x^{2}-360x=144
Whakamahia te āhuatanga tohatoha hei whakarea te 180x-360 ki te x.
\frac{180x^{2}-360x}{180}=\frac{144}{180}
Whakawehea ngā taha e rua ki te 180.
x^{2}+\left(-\frac{360}{180}\right)x=\frac{144}{180}
Mā te whakawehe ki te 180 ka wetekia te whakareanga ki te 180.
x^{2}-2x=\frac{144}{180}
Whakawehe -360 ki te 180.
x^{2}-2x=\frac{4}{5}
Whakahekea te hautanga \frac{144}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 36.
x^{2}-2x+1=\frac{4}{5}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{9}{5}
Tāpiri \frac{4}{5} ki te 1.
\left(x-1\right)^{2}=\frac{9}{5}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{3\sqrt{5}}{5} x-1=-\frac{3\sqrt{5}}{5}
Whakarūnātia.
x=\frac{3\sqrt{5}}{5}+1 x=-\frac{3\sqrt{5}}{5}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}