Whakaoti mō y
y=\frac{2\left(x^{2}-5x+2\right)}{x+1}
x\neq -1
Whakaoti mō x (complex solution)
x=\frac{\sqrt{y^{2}+28y+68}+y+10}{4}
x=\frac{-\sqrt{y^{2}+28y+68}+y+10}{4}
Whakaoti mō x
x=\frac{\sqrt{y^{2}+28y+68}+y+10}{4}
x=\frac{-\sqrt{y^{2}+28y+68}+y+10}{4}\text{, }y\geq 8\sqrt{2}-14\text{ or }y\leq -8\sqrt{2}-14
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-11x+10-\left(-\left(x+1\right)\right)\left(x-y\right)=6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-10 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{2}-11x+10-\left(-x-1\right)\left(x-y\right)=6
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
x^{2}-11x+10-\left(-x^{2}+xy-x+y\right)=6
Whakamahia te āhuatanga tohatoha hei whakarea te -x-1 ki te x-y.
x^{2}-11x+10+x^{2}-xy+x-y=6
Hei kimi i te tauaro o -x^{2}+xy-x+y, kimihia te tauaro o ia taurangi.
2x^{2}-11x+10-xy+x-y=6
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-10x+10-xy-y=6
Pahekotia te -11x me x, ka -10x.
-10x+10-xy-y=6-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua.
10-xy-y=6-2x^{2}+10x
Me tāpiri te 10x ki ngā taha e rua.
-xy-y=6-2x^{2}+10x-10
Tangohia te 10 mai i ngā taha e rua.
-xy-y=-4-2x^{2}+10x
Tangohia te 10 i te 6, ka -4.
\left(-x-1\right)y=-4-2x^{2}+10x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(-x-1\right)y=-2x^{2}+10x-4
He hanga arowhānui tō te whārite.
\frac{\left(-x-1\right)y}{-x-1}=\frac{-2x^{2}+10x-4}{-x-1}
Whakawehea ngā taha e rua ki te -x-1.
y=\frac{-2x^{2}+10x-4}{-x-1}
Mā te whakawehe ki te -x-1 ka wetekia te whakareanga ki te -x-1.
y=-\frac{2\left(-x^{2}+5x-2\right)}{x+1}
Whakawehe -4-2x^{2}+10x ki te -x-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}