Whakaoti mō x
x=\frac{\sqrt{322}}{46}\approx 0.390094749
x=-\frac{\sqrt{322}}{46}\approx -0.390094749
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-1=5\left(1-3x\right)\left(1+3x\right)+1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=\left(5-15x\right)\left(1+3x\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 1-3x.
x^{2}-1=5-45x^{2}+1
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-15x ki te 1+3x ka whakakotahi i ngā kupu rite.
x^{2}-1=6-45x^{2}
Tāpirihia te 5 ki te 1, ka 6.
x^{2}-1+45x^{2}=6
Me tāpiri te 45x^{2} ki ngā taha e rua.
46x^{2}-1=6
Pahekotia te x^{2} me 45x^{2}, ka 46x^{2}.
46x^{2}=6+1
Me tāpiri te 1 ki ngā taha e rua.
46x^{2}=7
Tāpirihia te 6 ki te 1, ka 7.
x^{2}=\frac{7}{46}
Whakawehea ngā taha e rua ki te 46.
x=\frac{\sqrt{322}}{46} x=-\frac{\sqrt{322}}{46}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-1=5\left(1-3x\right)\left(1+3x\right)+1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=\left(5-15x\right)\left(1+3x\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 1-3x.
x^{2}-1=5-45x^{2}+1
Whakamahia te āhuatanga tuaritanga hei whakarea te 5-15x ki te 1+3x ka whakakotahi i ngā kupu rite.
x^{2}-1=6-45x^{2}
Tāpirihia te 5 ki te 1, ka 6.
x^{2}-1-6=-45x^{2}
Tangohia te 6 mai i ngā taha e rua.
x^{2}-7=-45x^{2}
Tangohia te 6 i te -1, ka -7.
x^{2}-7+45x^{2}=0
Me tāpiri te 45x^{2} ki ngā taha e rua.
46x^{2}-7=0
Pahekotia te x^{2} me 45x^{2}, ka 46x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 46\left(-7\right)}}{2\times 46}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 46 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 46\left(-7\right)}}{2\times 46}
Pūrua 0.
x=\frac{0±\sqrt{-184\left(-7\right)}}{2\times 46}
Whakareatia -4 ki te 46.
x=\frac{0±\sqrt{1288}}{2\times 46}
Whakareatia -184 ki te -7.
x=\frac{0±2\sqrt{322}}{2\times 46}
Tuhia te pūtakerua o te 1288.
x=\frac{0±2\sqrt{322}}{92}
Whakareatia 2 ki te 46.
x=\frac{\sqrt{322}}{46}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{322}}{92} ina he tāpiri te ±.
x=-\frac{\sqrt{322}}{46}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{322}}{92} ina he tango te ±.
x=\frac{\sqrt{322}}{46} x=-\frac{\sqrt{322}}{46}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}