Whakaoti mō x
x = \frac{493}{10} = 49\frac{3}{10} = 49.3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times \frac{8}{7}-\frac{3}{10}\times \frac{8}{7}=105-x+\frac{3}{10}
Whakamahia te āhuatanga tohatoha hei whakarea te x-\frac{3}{10} ki te \frac{8}{7}.
x\times \frac{8}{7}+\frac{-3\times 8}{10\times 7}=105-x+\frac{3}{10}
Me whakarea te -\frac{3}{10} ki te \frac{8}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x\times \frac{8}{7}+\frac{-24}{70}=105-x+\frac{3}{10}
Mahia ngā whakarea i roto i te hautanga \frac{-3\times 8}{10\times 7}.
x\times \frac{8}{7}-\frac{12}{35}=105-x+\frac{3}{10}
Whakahekea te hautanga \frac{-24}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x\times \frac{8}{7}-\frac{12}{35}=\frac{1050}{10}-x+\frac{3}{10}
Me tahuri te 105 ki te hautau \frac{1050}{10}.
x\times \frac{8}{7}-\frac{12}{35}=\frac{1050+3}{10}-x
Tā te mea he rite te tauraro o \frac{1050}{10} me \frac{3}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
x\times \frac{8}{7}-\frac{12}{35}=\frac{1053}{10}-x
Tāpirihia te 1050 ki te 3, ka 1053.
x\times \frac{8}{7}-\frac{12}{35}+x=\frac{1053}{10}
Me tāpiri te x ki ngā taha e rua.
\frac{15}{7}x-\frac{12}{35}=\frac{1053}{10}
Pahekotia te x\times \frac{8}{7} me x, ka \frac{15}{7}x.
\frac{15}{7}x=\frac{1053}{10}+\frac{12}{35}
Me tāpiri te \frac{12}{35} ki ngā taha e rua.
\frac{15}{7}x=\frac{7371}{70}+\frac{24}{70}
Ko te maha noa iti rawa atu o 10 me 35 ko 70. Me tahuri \frac{1053}{10} me \frac{12}{35} ki te hautau me te tautūnga 70.
\frac{15}{7}x=\frac{7371+24}{70}
Tā te mea he rite te tauraro o \frac{7371}{70} me \frac{24}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15}{7}x=\frac{7395}{70}
Tāpirihia te 7371 ki te 24, ka 7395.
\frac{15}{7}x=\frac{1479}{14}
Whakahekea te hautanga \frac{7395}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x=\frac{1479}{14}\times \frac{7}{15}
Me whakarea ngā taha e rua ki te \frac{7}{15}, te tau utu o \frac{15}{7}.
x=\frac{1479\times 7}{14\times 15}
Me whakarea te \frac{1479}{14} ki te \frac{7}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{10353}{210}
Mahia ngā whakarea i roto i te hautanga \frac{1479\times 7}{14\times 15}.
x=\frac{493}{10}
Whakahekea te hautanga \frac{10353}{210} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}