Whakaoti mō x
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50}\approx 19.909297203
x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}\approx -20.029297203
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(125x^{2}+15x-50\times 40\right)\times 30+x\left(125x+15\right)\times 100=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 125x+15.
\left(125x^{2}+15x-2000\right)\times 30+x\left(125x+15\right)\times 100=6420000
Whakareatia te 50 ki te 40, ka 2000.
3750x^{2}+450x-60000+x\left(125x+15\right)\times 100=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te 125x^{2}+15x-2000 ki te 30.
3750x^{2}+450x-60000+\left(125x^{2}+15x\right)\times 100=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 125x+15.
3750x^{2}+450x-60000+12500x^{2}+1500x=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te 125x^{2}+15x ki te 100.
16250x^{2}+450x-60000+1500x=6420000
Pahekotia te 3750x^{2} me 12500x^{2}, ka 16250x^{2}.
16250x^{2}+1950x-60000=6420000
Pahekotia te 450x me 1500x, ka 1950x.
16250x^{2}+1950x-60000-6420000=0
Tangohia te 6420000 mai i ngā taha e rua.
16250x^{2}+1950x-6480000=0
Tangohia te 6420000 i te -60000, ka -6480000.
x=\frac{-1950±\sqrt{1950^{2}-4\times 16250\left(-6480000\right)}}{2\times 16250}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16250 mō a, 1950 mō b, me -6480000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1950±\sqrt{3802500-4\times 16250\left(-6480000\right)}}{2\times 16250}
Pūrua 1950.
x=\frac{-1950±\sqrt{3802500-65000\left(-6480000\right)}}{2\times 16250}
Whakareatia -4 ki te 16250.
x=\frac{-1950±\sqrt{3802500+421200000000}}{2\times 16250}
Whakareatia -65000 ki te -6480000.
x=\frac{-1950±\sqrt{421203802500}}{2\times 16250}
Tāpiri 3802500 ki te 421200000000.
x=\frac{-1950±150\sqrt{18720169}}{2\times 16250}
Tuhia te pūtakerua o te 421203802500.
x=\frac{-1950±150\sqrt{18720169}}{32500}
Whakareatia 2 ki te 16250.
x=\frac{150\sqrt{18720169}-1950}{32500}
Nā, me whakaoti te whārite x=\frac{-1950±150\sqrt{18720169}}{32500} ina he tāpiri te ±. Tāpiri -1950 ki te 150\sqrt{18720169}.
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
Whakawehe -1950+150\sqrt{18720169} ki te 32500.
x=\frac{-150\sqrt{18720169}-1950}{32500}
Nā, me whakaoti te whārite x=\frac{-1950±150\sqrt{18720169}}{32500} ina he tango te ±. Tango 150\sqrt{18720169} mai i -1950.
x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
Whakawehe -1950-150\sqrt{18720169} ki te 32500.
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50} x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
Kua oti te whārite te whakatau.
\left(125x^{2}+15x-50\times 40\right)\times 30+x\left(125x+15\right)\times 100=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 125x+15.
\left(125x^{2}+15x-2000\right)\times 30+x\left(125x+15\right)\times 100=6420000
Whakareatia te 50 ki te 40, ka 2000.
3750x^{2}+450x-60000+x\left(125x+15\right)\times 100=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te 125x^{2}+15x-2000 ki te 30.
3750x^{2}+450x-60000+\left(125x^{2}+15x\right)\times 100=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 125x+15.
3750x^{2}+450x-60000+12500x^{2}+1500x=6420000
Whakamahia te āhuatanga tohatoha hei whakarea te 125x^{2}+15x ki te 100.
16250x^{2}+450x-60000+1500x=6420000
Pahekotia te 3750x^{2} me 12500x^{2}, ka 16250x^{2}.
16250x^{2}+1950x-60000=6420000
Pahekotia te 450x me 1500x, ka 1950x.
16250x^{2}+1950x=6420000+60000
Me tāpiri te 60000 ki ngā taha e rua.
16250x^{2}+1950x=6480000
Tāpirihia te 6420000 ki te 60000, ka 6480000.
\frac{16250x^{2}+1950x}{16250}=\frac{6480000}{16250}
Whakawehea ngā taha e rua ki te 16250.
x^{2}+\frac{1950}{16250}x=\frac{6480000}{16250}
Mā te whakawehe ki te 16250 ka wetekia te whakareanga ki te 16250.
x^{2}+\frac{3}{25}x=\frac{6480000}{16250}
Whakahekea te hautanga \frac{1950}{16250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 650.
x^{2}+\frac{3}{25}x=\frac{5184}{13}
Whakahekea te hautanga \frac{6480000}{16250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 1250.
x^{2}+\frac{3}{25}x+\left(\frac{3}{50}\right)^{2}=\frac{5184}{13}+\left(\frac{3}{50}\right)^{2}
Whakawehea te \frac{3}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{50}. Nā, tāpiria te pūrua o te \frac{3}{50} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{25}x+\frac{9}{2500}=\frac{5184}{13}+\frac{9}{2500}
Pūruatia \frac{3}{50} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{25}x+\frac{9}{2500}=\frac{12960117}{32500}
Tāpiri \frac{5184}{13} ki te \frac{9}{2500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{50}\right)^{2}=\frac{12960117}{32500}
Tauwehea x^{2}+\frac{3}{25}x+\frac{9}{2500}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{50}\right)^{2}}=\sqrt{\frac{12960117}{32500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{50}=\frac{3\sqrt{18720169}}{650} x+\frac{3}{50}=-\frac{3\sqrt{18720169}}{650}
Whakarūnātia.
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50} x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
Me tango \frac{3}{50} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}