Whakaoti mō x
x = \frac{110}{21} = 5\frac{5}{21} \approx 5.238095238
Graph
Tohaina
Kua tāruatia ki te papatopenga
89.5x+8055=100x+8000
Whakamahia te āhuatanga tohatoha hei whakarea te x+90 ki te 89.5.
89.5x+8055-100x=8000
Tangohia te 100x mai i ngā taha e rua.
-10.5x+8055=8000
Pahekotia te 89.5x me -100x, ka -10.5x.
-10.5x=8000-8055
Tangohia te 8055 mai i ngā taha e rua.
-10.5x=-55
Tangohia te 8055 i te 8000, ka -55.
x=\frac{-55}{-10.5}
Whakawehea ngā taha e rua ki te -10.5.
x=\frac{-550}{-105}
Whakarohaina te \frac{-55}{-10.5} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{110}{21}
Whakahekea te hautanga \frac{-550}{-105} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}