Whakaoti mō x
x=\frac{\sqrt{73}-7}{2}\approx 0.772001873
x=\frac{-\sqrt{73}-7}{2}\approx -7.772001873
x=3
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{2}+9x+18\right)\left(x-1\right)\left(x-2\right)=12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x+3 ka whakakotahi i ngā kupu rite.
\left(x^{3}+8x^{2}+9x-18\right)\left(x-2\right)=12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}+9x+18 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{4}+6x^{3}-7x^{2}-36x+36=12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{3}+8x^{2}+9x-18 ki te x-2 ka whakakotahi i ngā kupu rite.
x^{4}+6x^{3}-7x^{2}-36x+36-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
x^{4}+6x^{3}-19x^{2}-36x+36=0
Pahekotia te -7x^{2} me -12x^{2}, ka -19x^{2}.
±36,±18,±12,±9,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 36, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+4x^{2}-27x+18=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}+6x^{3}-19x^{2}-36x+36 ki te x+2, kia riro ko x^{3}+4x^{2}-27x+18. Whakaotihia te whārite ina ōrite te hua ki te 0.
±18,±9,±6,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 18, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+7x-6=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+4x^{2}-27x+18 ki te x-3, kia riro ko x^{2}+7x-6. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\left(-6\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 7 mō te b, me te -6 mō te c i te ture pūrua.
x=\frac{-7±\sqrt{73}}{2}
Mahia ngā tātaitai.
x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
Whakaotia te whārite x^{2}+7x-6=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-2 x=3 x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}