Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{2}+9x+18\right)\left(x-1\right)\left(x-2\right)=12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x+3 ka whakakotahi i ngā kupu rite.
\left(x^{3}+8x^{2}+9x-18\right)\left(x-2\right)=12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}+9x+18 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{4}+6x^{3}-7x^{2}-36x+36=12x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{3}+8x^{2}+9x-18 ki te x-2 ka whakakotahi i ngā kupu rite.
x^{4}+6x^{3}-7x^{2}-36x+36-12x^{2}=0
Tangohia te 12x^{2} mai i ngā taha e rua.
x^{4}+6x^{3}-19x^{2}-36x+36=0
Pahekotia te -7x^{2} me -12x^{2}, ka -19x^{2}.
±36,±18,±12,±9,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 36, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+4x^{2}-27x+18=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}+6x^{3}-19x^{2}-36x+36 ki te x+2, kia riro ko x^{3}+4x^{2}-27x+18. Whakaotihia te whārite ina ōrite te hua ki te 0.
±18,±9,±6,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 18, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+7x-6=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+4x^{2}-27x+18 ki te x-3, kia riro ko x^{2}+7x-6. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\left(-6\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 7 mō te b, me te -6 mō te c i te ture pūrua.
x=\frac{-7±\sqrt{73}}{2}
Mahia ngā tātaitai.
x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
Whakaotia te whārite x^{2}+7x-6=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-2 x=3 x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
Rārangitia ngā otinga katoa i kitea.