Whakaoti mō x
x=\frac{3y-29}{4}
Whakaoti mō y
y=\frac{4x+29}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
xy+x+5y+5=\left(x+8\right)\left(y-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te y+1.
xy+x+5y+5=xy-3x+8y-24
Whakamahia te āhuatanga tohatoha hei whakarea te x+8 ki te y-3.
xy+x+5y+5-xy=-3x+8y-24
Tangohia te xy mai i ngā taha e rua.
x+5y+5=-3x+8y-24
Pahekotia te xy me -xy, ka 0.
x+5y+5+3x=8y-24
Me tāpiri te 3x ki ngā taha e rua.
4x+5y+5=8y-24
Pahekotia te x me 3x, ka 4x.
4x+5=8y-24-5y
Tangohia te 5y mai i ngā taha e rua.
4x+5=3y-24
Pahekotia te 8y me -5y, ka 3y.
4x=3y-24-5
Tangohia te 5 mai i ngā taha e rua.
4x=3y-29
Tangohia te 5 i te -24, ka -29.
\frac{4x}{4}=\frac{3y-29}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{3y-29}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
xy+x+5y+5=\left(x+8\right)\left(y-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te y+1.
xy+x+5y+5=xy-3x+8y-24
Whakamahia te āhuatanga tohatoha hei whakarea te x+8 ki te y-3.
xy+x+5y+5-xy=-3x+8y-24
Tangohia te xy mai i ngā taha e rua.
x+5y+5=-3x+8y-24
Pahekotia te xy me -xy, ka 0.
x+5y+5-8y=-3x-24
Tangohia te 8y mai i ngā taha e rua.
x-3y+5=-3x-24
Pahekotia te 5y me -8y, ka -3y.
-3y+5=-3x-24-x
Tangohia te x mai i ngā taha e rua.
-3y+5=-4x-24
Pahekotia te -3x me -x, ka -4x.
-3y=-4x-24-5
Tangohia te 5 mai i ngā taha e rua.
-3y=-4x-29
Tangohia te 5 i te -24, ka -29.
\frac{-3y}{-3}=\frac{-4x-29}{-3}
Whakawehea ngā taha e rua ki te -3.
y=\frac{-4x-29}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
y=\frac{4x+29}{3}
Whakawehe -4x-29 ki te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}