(x+25) \times 80 \% =14
Whakaoti mō x
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+25\right)\times \frac{4}{5}=14
Whakahekea te hautanga \frac{80}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x\times \frac{4}{5}+25\times \frac{4}{5}=14
Whakamahia te āhuatanga tohatoha hei whakarea te x+25 ki te \frac{4}{5}.
x\times \frac{4}{5}+\frac{25\times 4}{5}=14
Tuhia te 25\times \frac{4}{5} hei hautanga kotahi.
x\times \frac{4}{5}+\frac{100}{5}=14
Whakareatia te 25 ki te 4, ka 100.
x\times \frac{4}{5}+20=14
Whakawehea te 100 ki te 5, kia riro ko 20.
x\times \frac{4}{5}=14-20
Tangohia te 20 mai i ngā taha e rua.
x\times \frac{4}{5}=-6
Tangohia te 20 i te 14, ka -6.
x=-6\times \frac{5}{4}
Me whakarea ngā taha e rua ki te \frac{5}{4}, te tau utu o \frac{4}{5}.
x=\frac{-6\times 5}{4}
Tuhia te -6\times \frac{5}{4} hei hautanga kotahi.
x=\frac{-30}{4}
Whakareatia te -6 ki te 5, ka -30.
x=-\frac{15}{2}
Whakahekea te hautanga \frac{-30}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}