Whakaoti mō x
x=-100
x=81
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+19x=8100
Whakamahia te āhuatanga tohatoha hei whakarea te x+19 ki te x.
x^{2}+19x-8100=0
Tangohia te 8100 mai i ngā taha e rua.
x=\frac{-19±\sqrt{19^{2}-4\left(-8100\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 19 mō b, me -8100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-8100\right)}}{2}
Pūrua 19.
x=\frac{-19±\sqrt{361+32400}}{2}
Whakareatia -4 ki te -8100.
x=\frac{-19±\sqrt{32761}}{2}
Tāpiri 361 ki te 32400.
x=\frac{-19±181}{2}
Tuhia te pūtakerua o te 32761.
x=\frac{162}{2}
Nā, me whakaoti te whārite x=\frac{-19±181}{2} ina he tāpiri te ±. Tāpiri -19 ki te 181.
x=81
Whakawehe 162 ki te 2.
x=-\frac{200}{2}
Nā, me whakaoti te whārite x=\frac{-19±181}{2} ina he tango te ±. Tango 181 mai i -19.
x=-100
Whakawehe -200 ki te 2.
x=81 x=-100
Kua oti te whārite te whakatau.
x^{2}+19x=8100
Whakamahia te āhuatanga tohatoha hei whakarea te x+19 ki te x.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=8100+\left(\frac{19}{2}\right)^{2}
Whakawehea te 19, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{19}{2}. Nā, tāpiria te pūrua o te \frac{19}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+19x+\frac{361}{4}=8100+\frac{361}{4}
Pūruatia \frac{19}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+19x+\frac{361}{4}=\frac{32761}{4}
Tāpiri 8100 ki te \frac{361}{4}.
\left(x+\frac{19}{2}\right)^{2}=\frac{32761}{4}
Tauwehea x^{2}+19x+\frac{361}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{\frac{32761}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{19}{2}=\frac{181}{2} x+\frac{19}{2}=-\frac{181}{2}
Whakarūnātia.
x=81 x=-100
Me tango \frac{19}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}