Whakaoti mō x
x=-12
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+17x-30=54
Whakamahia te āhuatanga tuaritanga hei whakarea te x+10 ki te 2x-3 ka whakakotahi i ngā kupu rite.
2x^{2}+17x-30-54=0
Tangohia te 54 mai i ngā taha e rua.
2x^{2}+17x-84=0
Tangohia te 54 i te -30, ka -84.
x=\frac{-17±\sqrt{17^{2}-4\times 2\left(-84\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 17 mō b, me -84 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 2\left(-84\right)}}{2\times 2}
Pūrua 17.
x=\frac{-17±\sqrt{289-8\left(-84\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-17±\sqrt{289+672}}{2\times 2}
Whakareatia -8 ki te -84.
x=\frac{-17±\sqrt{961}}{2\times 2}
Tāpiri 289 ki te 672.
x=\frac{-17±31}{2\times 2}
Tuhia te pūtakerua o te 961.
x=\frac{-17±31}{4}
Whakareatia 2 ki te 2.
x=\frac{14}{4}
Nā, me whakaoti te whārite x=\frac{-17±31}{4} ina he tāpiri te ±. Tāpiri -17 ki te 31.
x=\frac{7}{2}
Whakahekea te hautanga \frac{14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{48}{4}
Nā, me whakaoti te whārite x=\frac{-17±31}{4} ina he tango te ±. Tango 31 mai i -17.
x=-12
Whakawehe -48 ki te 4.
x=\frac{7}{2} x=-12
Kua oti te whārite te whakatau.
2x^{2}+17x-30=54
Whakamahia te āhuatanga tuaritanga hei whakarea te x+10 ki te 2x-3 ka whakakotahi i ngā kupu rite.
2x^{2}+17x=54+30
Me tāpiri te 30 ki ngā taha e rua.
2x^{2}+17x=84
Tāpirihia te 54 ki te 30, ka 84.
\frac{2x^{2}+17x}{2}=\frac{84}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{17}{2}x=\frac{84}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{17}{2}x=42
Whakawehe 84 ki te 2.
x^{2}+\frac{17}{2}x+\left(\frac{17}{4}\right)^{2}=42+\left(\frac{17}{4}\right)^{2}
Whakawehea te \frac{17}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{17}{4}. Nā, tāpiria te pūrua o te \frac{17}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{17}{2}x+\frac{289}{16}=42+\frac{289}{16}
Pūruatia \frac{17}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{17}{2}x+\frac{289}{16}=\frac{961}{16}
Tāpiri 42 ki te \frac{289}{16}.
\left(x+\frac{17}{4}\right)^{2}=\frac{961}{16}
Tauwehea x^{2}+\frac{17}{2}x+\frac{289}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{4}\right)^{2}}=\sqrt{\frac{961}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{17}{4}=\frac{31}{4} x+\frac{17}{4}=-\frac{31}{4}
Whakarūnātia.
x=\frac{7}{2} x=-12
Me tango \frac{17}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}