Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\times 2=7
Whakareatia te x ki te x, ka x^{2}.
x^{2}=\frac{7}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{\sqrt{14}}{2} x=-\frac{\sqrt{14}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}\times 2=7
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 2-7=0
Tangohia te 7 mai i ngā taha e rua.
2x^{2}-7=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-7\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-7\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-7\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{56}}{2\times 2}
Whakareatia -8 ki te -7.
x=\frac{0±2\sqrt{14}}{2\times 2}
Tuhia te pūtakerua o te 56.
x=\frac{0±2\sqrt{14}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{14}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{14}}{4} ina he tāpiri te ±.
x=-\frac{\sqrt{14}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{14}}{4} ina he tango te ±.
x=\frac{\sqrt{14}}{2} x=-\frac{\sqrt{14}}{2}
Kua oti te whārite te whakatau.