Whakaoti mō x
x=\frac{\sqrt{78}}{6}+\frac{3}{2}\approx 2.971960144
x=-\frac{\sqrt{78}}{6}+\frac{3}{2}\approx 0.028039856
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(1800-600x\right)x=50
Whakamahia te āhuatanga tohatoha hei whakarea te 90-30x ki te 20.
1800x-600x^{2}=50
Whakamahia te āhuatanga tohatoha hei whakarea te 1800-600x ki te x.
1800x-600x^{2}-50=0
Tangohia te 50 mai i ngā taha e rua.
-600x^{2}+1800x-50=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1800±\sqrt{1800^{2}-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -600 mō a, 1800 mō b, me -50 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1800±\sqrt{3240000-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
Pūrua 1800.
x=\frac{-1800±\sqrt{3240000+2400\left(-50\right)}}{2\left(-600\right)}
Whakareatia -4 ki te -600.
x=\frac{-1800±\sqrt{3240000-120000}}{2\left(-600\right)}
Whakareatia 2400 ki te -50.
x=\frac{-1800±\sqrt{3120000}}{2\left(-600\right)}
Tāpiri 3240000 ki te -120000.
x=\frac{-1800±200\sqrt{78}}{2\left(-600\right)}
Tuhia te pūtakerua o te 3120000.
x=\frac{-1800±200\sqrt{78}}{-1200}
Whakareatia 2 ki te -600.
x=\frac{200\sqrt{78}-1800}{-1200}
Nā, me whakaoti te whārite x=\frac{-1800±200\sqrt{78}}{-1200} ina he tāpiri te ±. Tāpiri -1800 ki te 200\sqrt{78}.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
Whakawehe -1800+200\sqrt{78} ki te -1200.
x=\frac{-200\sqrt{78}-1800}{-1200}
Nā, me whakaoti te whārite x=\frac{-1800±200\sqrt{78}}{-1200} ina he tango te ±. Tango 200\sqrt{78} mai i -1800.
x=\frac{\sqrt{78}}{6}+\frac{3}{2}
Whakawehe -1800-200\sqrt{78} ki te -1200.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2} x=\frac{\sqrt{78}}{6}+\frac{3}{2}
Kua oti te whārite te whakatau.
\left(1800-600x\right)x=50
Whakamahia te āhuatanga tohatoha hei whakarea te 90-30x ki te 20.
1800x-600x^{2}=50
Whakamahia te āhuatanga tohatoha hei whakarea te 1800-600x ki te x.
-600x^{2}+1800x=50
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-600x^{2}+1800x}{-600}=\frac{50}{-600}
Whakawehea ngā taha e rua ki te -600.
x^{2}+\frac{1800}{-600}x=\frac{50}{-600}
Mā te whakawehe ki te -600 ka wetekia te whakareanga ki te -600.
x^{2}-3x=\frac{50}{-600}
Whakawehe 1800 ki te -600.
x^{2}-3x=-\frac{1}{12}
Whakahekea te hautanga \frac{50}{-600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 50.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{12}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-\frac{1}{12}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{13}{6}
Tāpiri -\frac{1}{12} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{13}{6}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{6}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{78}}{6} x-\frac{3}{2}=-\frac{\sqrt{78}}{6}
Whakarūnātia.
x=\frac{\sqrt{78}}{6}+\frac{3}{2} x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}