Aromātai
\frac{123}{2}=61.5
Tauwehe
\frac{3 \cdot 41}{2} = 61\frac{1}{2} = 61.5
Tohaina
Kua tāruatia ki te papatopenga
84-\frac{18+5}{6}+\frac{5\times 3+1}{3}-24
Whakareatia te 3 ki te 6, ka 18.
84-\frac{23}{6}+\frac{5\times 3+1}{3}-24
Tāpirihia te 18 ki te 5, ka 23.
\frac{504}{6}-\frac{23}{6}+\frac{5\times 3+1}{3}-24
Me tahuri te 84 ki te hautau \frac{504}{6}.
\frac{504-23}{6}+\frac{5\times 3+1}{3}-24
Tā te mea he rite te tauraro o \frac{504}{6} me \frac{23}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{481}{6}+\frac{5\times 3+1}{3}-24
Tangohia te 23 i te 504, ka 481.
\frac{481}{6}+\frac{15+1}{3}-24
Whakareatia te 5 ki te 3, ka 15.
\frac{481}{6}+\frac{16}{3}-24
Tāpirihia te 15 ki te 1, ka 16.
\frac{481}{6}+\frac{32}{6}-24
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri \frac{481}{6} me \frac{16}{3} ki te hautau me te tautūnga 6.
\frac{481+32}{6}-24
Tā te mea he rite te tauraro o \frac{481}{6} me \frac{32}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{513}{6}-24
Tāpirihia te 481 ki te 32, ka 513.
\frac{171}{2}-24
Whakahekea te hautanga \frac{513}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{171}{2}-\frac{48}{2}
Me tahuri te 24 ki te hautau \frac{48}{2}.
\frac{171-48}{2}
Tā te mea he rite te tauraro o \frac{171}{2} me \frac{48}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{123}{2}
Tangohia te 48 i te 171, ka 123.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}