(8224-x) \times (1+56 \% )=x
Whakaoti mō x
x = \frac{10023}{2} = 5011\frac{1}{2} = 5011.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(8224-x\right)\left(1+\frac{14}{25}\right)=x
Whakahekea te hautanga \frac{56}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\left(8224-x\right)\left(\frac{25}{25}+\frac{14}{25}\right)=x
Me tahuri te 1 ki te hautau \frac{25}{25}.
\left(8224-x\right)\times \frac{25+14}{25}=x
Tā te mea he rite te tauraro o \frac{25}{25} me \frac{14}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(8224-x\right)\times \frac{39}{25}=x
Tāpirihia te 25 ki te 14, ka 39.
8224\times \frac{39}{25}-x\times \frac{39}{25}=x
Whakamahia te āhuatanga tohatoha hei whakarea te 8224-x ki te \frac{39}{25}.
\frac{8224\times 39}{25}-x\times \frac{39}{25}=x
Tuhia te 8224\times \frac{39}{25} hei hautanga kotahi.
\frac{320736}{25}-x\times \frac{39}{25}=x
Whakareatia te 8224 ki te 39, ka 320736.
\frac{320736}{25}-\frac{39}{25}x=x
Whakareatia te -1 ki te \frac{39}{25}, ka -\frac{39}{25}.
\frac{320736}{25}-\frac{39}{25}x-x=0
Tangohia te x mai i ngā taha e rua.
\frac{320736}{25}-\frac{64}{25}x=0
Pahekotia te -\frac{39}{25}x me -x, ka -\frac{64}{25}x.
-\frac{64}{25}x=-\frac{320736}{25}
Tangohia te \frac{320736}{25} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{320736}{25}\left(-\frac{25}{64}\right)
Me whakarea ngā taha e rua ki te -\frac{25}{64}, te tau utu o -\frac{64}{25}.
x=\frac{-320736\left(-25\right)}{25\times 64}
Me whakarea te -\frac{320736}{25} ki te -\frac{25}{64} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{8018400}{1600}
Mahia ngā whakarea i roto i te hautanga \frac{-320736\left(-25\right)}{25\times 64}.
x=\frac{10023}{2}
Whakahekea te hautanga \frac{8018400}{1600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 800.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}