(8-xy)( \frac{ 1 }{ \sqrt{ 5 } } \sqrt{ 5) }
Aromātai
8-xy
Kimi Pārōnaki e ai ki x
-y
Tohaina
Kua tāruatia ki te papatopenga
\left(8-xy\right)\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{5}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\left(8-xy\right)\times \frac{\sqrt{5}}{5}\sqrt{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\left(8-xy\right)\sqrt{5}}{5}\sqrt{5}
Tuhia te \left(8-xy\right)\times \frac{\sqrt{5}}{5} hei hautanga kotahi.
\frac{\left(8-xy\right)\sqrt{5}\sqrt{5}}{5}
Tuhia te \frac{\left(8-xy\right)\sqrt{5}}{5}\sqrt{5} hei hautanga kotahi.
\frac{\left(8-xy\right)\times 5}{5}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
8-xy
Me whakakore te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}