Whakaoti mō x
x=4
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
760+112x-8x^{2}=1080
Whakamahia te āhuatanga tuaritanga hei whakarea te 76-4x ki te 10+2x ka whakakotahi i ngā kupu rite.
760+112x-8x^{2}-1080=0
Tangohia te 1080 mai i ngā taha e rua.
-320+112x-8x^{2}=0
Tangohia te 1080 i te 760, ka -320.
-8x^{2}+112x-320=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-112±\sqrt{112^{2}-4\left(-8\right)\left(-320\right)}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 112 mō b, me -320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112±\sqrt{12544-4\left(-8\right)\left(-320\right)}}{2\left(-8\right)}
Pūrua 112.
x=\frac{-112±\sqrt{12544+32\left(-320\right)}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-112±\sqrt{12544-10240}}{2\left(-8\right)}
Whakareatia 32 ki te -320.
x=\frac{-112±\sqrt{2304}}{2\left(-8\right)}
Tāpiri 12544 ki te -10240.
x=\frac{-112±48}{2\left(-8\right)}
Tuhia te pūtakerua o te 2304.
x=\frac{-112±48}{-16}
Whakareatia 2 ki te -8.
x=-\frac{64}{-16}
Nā, me whakaoti te whārite x=\frac{-112±48}{-16} ina he tāpiri te ±. Tāpiri -112 ki te 48.
x=4
Whakawehe -64 ki te -16.
x=-\frac{160}{-16}
Nā, me whakaoti te whārite x=\frac{-112±48}{-16} ina he tango te ±. Tango 48 mai i -112.
x=10
Whakawehe -160 ki te -16.
x=4 x=10
Kua oti te whārite te whakatau.
760+112x-8x^{2}=1080
Whakamahia te āhuatanga tuaritanga hei whakarea te 76-4x ki te 10+2x ka whakakotahi i ngā kupu rite.
112x-8x^{2}=1080-760
Tangohia te 760 mai i ngā taha e rua.
112x-8x^{2}=320
Tangohia te 760 i te 1080, ka 320.
-8x^{2}+112x=320
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}+112x}{-8}=\frac{320}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{112}{-8}x=\frac{320}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-14x=\frac{320}{-8}
Whakawehe 112 ki te -8.
x^{2}-14x=-40
Whakawehe 320 ki te -8.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-40+49
Pūrua -7.
x^{2}-14x+49=9
Tāpiri -40 ki te 49.
\left(x-7\right)^{2}=9
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=3 x-7=-3
Whakarūnātia.
x=10 x=4
Me tāpiri 7 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}