Whakaoti mō x
x = -\frac{371}{10} = -37\frac{1}{10} = -37.1
Graph
Tohaina
Kua tāruatia ki te papatopenga
742\times 43+x\times 5=45\left(x+742\right)
Tē taea kia ōrite te tāupe x ki -742 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+742.
31906+x\times 5=45\left(x+742\right)
Whakareatia te 742 ki te 43, ka 31906.
31906+x\times 5=45x+33390
Whakamahia te āhuatanga tohatoha hei whakarea te 45 ki te x+742.
31906+x\times 5-45x=33390
Tangohia te 45x mai i ngā taha e rua.
31906-40x=33390
Pahekotia te x\times 5 me -45x, ka -40x.
-40x=33390-31906
Tangohia te 31906 mai i ngā taha e rua.
-40x=1484
Tangohia te 31906 i te 33390, ka 1484.
x=\frac{1484}{-40}
Whakawehea ngā taha e rua ki te -40.
x=-\frac{371}{10}
Whakahekea te hautanga \frac{1484}{-40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}