Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

720x^{2}=2592
Whakareatia te x ki te x, ka x^{2}.
x^{2}=\frac{2592}{720}
Whakawehea ngā taha e rua ki te 720.
x^{2}=\frac{18}{5}
Whakahekea te hautanga \frac{2592}{720} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 144.
x=\frac{3\sqrt{10}}{5} x=-\frac{3\sqrt{10}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
720x^{2}=2592
Whakareatia te x ki te x, ka x^{2}.
720x^{2}-2592=0
Tangohia te 2592 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 720\left(-2592\right)}}{2\times 720}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 720 mō a, 0 mō b, me -2592 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 720\left(-2592\right)}}{2\times 720}
Pūrua 0.
x=\frac{0±\sqrt{-2880\left(-2592\right)}}{2\times 720}
Whakareatia -4 ki te 720.
x=\frac{0±\sqrt{7464960}}{2\times 720}
Whakareatia -2880 ki te -2592.
x=\frac{0±864\sqrt{10}}{2\times 720}
Tuhia te pūtakerua o te 7464960.
x=\frac{0±864\sqrt{10}}{1440}
Whakareatia 2 ki te 720.
x=\frac{3\sqrt{10}}{5}
Nā, me whakaoti te whārite x=\frac{0±864\sqrt{10}}{1440} ina he tāpiri te ±.
x=-\frac{3\sqrt{10}}{5}
Nā, me whakaoti te whārite x=\frac{0±864\sqrt{10}}{1440} ina he tango te ±.
x=\frac{3\sqrt{10}}{5} x=-\frac{3\sqrt{10}}{5}
Kua oti te whārite te whakatau.