Whakaoti mō x
x=2.8
x=2.7
Graph
Tohaina
Kua tāruatia ki te papatopenga
11x-14-2x^{2}=1.12
Whakamahia te āhuatanga tuaritanga hei whakarea te 7-2x ki te x-2 ka whakakotahi i ngā kupu rite.
11x-14-2x^{2}-1.12=0
Tangohia te 1.12 mai i ngā taha e rua.
11x-15.12-2x^{2}=0
Tangohia te 1.12 i te -14, ka -15.12.
-2x^{2}+11x-15.12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\left(-2\right)\left(-15.12\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 11 mō b, me -15.12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-2\right)\left(-15.12\right)}}{2\left(-2\right)}
Pūrua 11.
x=\frac{-11±\sqrt{121+8\left(-15.12\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-11±\sqrt{121-120.96}}{2\left(-2\right)}
Whakareatia 8 ki te -15.12.
x=\frac{-11±\sqrt{0.04}}{2\left(-2\right)}
Tāpiri 121 ki te -120.96.
x=\frac{-11±\frac{1}{5}}{2\left(-2\right)}
Tuhia te pūtakerua o te 0.04.
x=\frac{-11±\frac{1}{5}}{-4}
Whakareatia 2 ki te -2.
x=-\frac{\frac{54}{5}}{-4}
Nā, me whakaoti te whārite x=\frac{-11±\frac{1}{5}}{-4} ina he tāpiri te ±. Tāpiri -11 ki te \frac{1}{5}.
x=\frac{27}{10}
Whakawehe -\frac{54}{5} ki te -4.
x=-\frac{\frac{56}{5}}{-4}
Nā, me whakaoti te whārite x=\frac{-11±\frac{1}{5}}{-4} ina he tango te ±. Tango \frac{1}{5} mai i -11.
x=\frac{14}{5}
Whakawehe -\frac{56}{5} ki te -4.
x=\frac{27}{10} x=\frac{14}{5}
Kua oti te whārite te whakatau.
11x-14-2x^{2}=1.12
Whakamahia te āhuatanga tuaritanga hei whakarea te 7-2x ki te x-2 ka whakakotahi i ngā kupu rite.
11x-2x^{2}=1.12+14
Me tāpiri te 14 ki ngā taha e rua.
11x-2x^{2}=15.12
Tāpirihia te 1.12 ki te 14, ka 15.12.
-2x^{2}+11x=15.12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+11x}{-2}=\frac{15.12}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{11}{-2}x=\frac{15.12}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{11}{2}x=\frac{15.12}{-2}
Whakawehe 11 ki te -2.
x^{2}-\frac{11}{2}x=-7.56
Whakawehe 15.12 ki te -2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-7.56+\left(-\frac{11}{4}\right)^{2}
Whakawehea te -\frac{11}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{4}. Nā, tāpiria te pūrua o te -\frac{11}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-7.56+\frac{121}{16}
Pūruatia -\frac{11}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{1}{400}
Tāpiri -7.56 ki te \frac{121}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{4}\right)^{2}=\frac{1}{400}
Tauwehea x^{2}-\frac{11}{2}x+\frac{121}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{1}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{4}=\frac{1}{20} x-\frac{11}{4}=-\frac{1}{20}
Whakarūnātia.
x=\frac{14}{5} x=\frac{27}{10}
Me tāpiri \frac{11}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}