Whakaoti mō x
x=-\frac{3}{4}=-0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(6x-2\right)\left(x+0\times 5\right)-6\left(x+1\right)\left(x+0\times 5\right)=6
Whakareatia ngā taha e rua o te whārite ki te 6.
\left(6x-2\right)\left(x+0\right)-6\left(x+1\right)\left(x+0\times 5\right)=6
Whakareatia te 0 ki te 5, ka 0.
\left(6x-2\right)x-6\left(x+1\right)\left(x+0\times 5\right)=6
Ko te tau i tāpiria he kore ka hua koia tonu.
6x^{2}-2x-6\left(x+1\right)\left(x+0\times 5\right)=6
Whakamahia te āhuatanga tohatoha hei whakarea te 6x-2 ki te x.
6x^{2}-2x-6\left(x+1\right)\left(x+0\right)=6
Whakareatia te 0 ki te 5, ka 0.
6x^{2}-2x-6\left(x+1\right)x=6
Ko te tau i tāpiria he kore ka hua koia tonu.
6x^{2}-2x+\left(-6x-6\right)x=6
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x+1.
6x^{2}-2x-6x^{2}-6x=6
Whakamahia te āhuatanga tohatoha hei whakarea te -6x-6 ki te x.
-2x-6x=6
Pahekotia te 6x^{2} me -6x^{2}, ka 0.
-8x=6
Pahekotia te -2x me -6x, ka -8x.
x=\frac{6}{-8}
Whakawehea ngā taha e rua ki te -8.
x=-\frac{3}{4}
Whakahekea te hautanga \frac{6}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}