Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(12-2x\right)x=18
Whakamahia te āhuatanga tohatoha hei whakarea te 6-x ki te 2.
12x-2x^{2}=18
Whakamahia te āhuatanga tohatoha hei whakarea te 12-2x ki te x.
12x-2x^{2}-18=0
Tangohia te 18 mai i ngā taha e rua.
-2x^{2}+12x-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 12 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Pūrua 12.
x=\frac{-12±\sqrt{144+8\left(-18\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-12±\sqrt{144-144}}{2\left(-2\right)}
Whakareatia 8 ki te -18.
x=\frac{-12±\sqrt{0}}{2\left(-2\right)}
Tāpiri 144 ki te -144.
x=-\frac{12}{2\left(-2\right)}
Tuhia te pūtakerua o te 0.
x=-\frac{12}{-4}
Whakareatia 2 ki te -2.
x=3
Whakawehe -12 ki te -4.
\left(12-2x\right)x=18
Whakamahia te āhuatanga tohatoha hei whakarea te 6-x ki te 2.
12x-2x^{2}=18
Whakamahia te āhuatanga tohatoha hei whakarea te 12-2x ki te x.
-2x^{2}+12x=18
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+12x}{-2}=\frac{18}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{12}{-2}x=\frac{18}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-6x=\frac{18}{-2}
Whakawehe 12 ki te -2.
x^{2}-6x=-9
Whakawehe 18 ki te -2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-9+9
Pūrua -3.
x^{2}-6x+9=0
Tāpiri -9 ki te 9.
\left(x-3\right)^{2}=0
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=0 x-3=0
Whakarūnātia.
x=3 x=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=3
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}