Whakaoti mō x (complex solution)
x=\frac{-\sqrt{47}i+7}{2}\approx 3.5-3.4278273i
x=\frac{7+\sqrt{47}i}{2}\approx 3.5+3.4278273i
Graph
Tohaina
Kua tāruatia ki te papatopenga
6-x^{2}+7x=30
Whakareatia te x ki te x, ka x^{2}.
6-x^{2}+7x-30=0
Tangohia te 30 mai i ngā taha e rua.
-24-x^{2}+7x=0
Tangohia te 30 i te 6, ka -24.
-x^{2}+7x-24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 7 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+4\left(-24\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-7±\sqrt{49-96}}{2\left(-1\right)}
Whakareatia 4 ki te -24.
x=\frac{-7±\sqrt{-47}}{2\left(-1\right)}
Tāpiri 49 ki te -96.
x=\frac{-7±\sqrt{47}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -47.
x=\frac{-7±\sqrt{47}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-7+\sqrt{47}i}{-2}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{47}i}{-2} ina he tāpiri te ±. Tāpiri -7 ki te i\sqrt{47}.
x=\frac{-\sqrt{47}i+7}{2}
Whakawehe -7+i\sqrt{47} ki te -2.
x=\frac{-\sqrt{47}i-7}{-2}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{47}i}{-2} ina he tango te ±. Tango i\sqrt{47} mai i -7.
x=\frac{7+\sqrt{47}i}{2}
Whakawehe -7-i\sqrt{47} ki te -2.
x=\frac{-\sqrt{47}i+7}{2} x=\frac{7+\sqrt{47}i}{2}
Kua oti te whārite te whakatau.
6-x^{2}+7x=30
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+7x=30-6
Tangohia te 6 mai i ngā taha e rua.
-x^{2}+7x=24
Tangohia te 6 i te 30, ka 24.
\frac{-x^{2}+7x}{-1}=\frac{24}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{7}{-1}x=\frac{24}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-7x=\frac{24}{-1}
Whakawehe 7 ki te -1.
x^{2}-7x=-24
Whakawehe 24 ki te -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-24+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=-24+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=-\frac{47}{4}
Tāpiri -24 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=-\frac{47}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{\sqrt{47}i}{2} x-\frac{7}{2}=-\frac{\sqrt{47}i}{2}
Whakarūnātia.
x=\frac{7+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i+7}{2}
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}