Whakaoti mō x
x=-\frac{1}{5}=-0.2
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(5x\right)^{2}-1=-1-5x
Whakaarohia te \left(5x-1\right)\left(5x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
5^{2}x^{2}-1=-1-5x
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-1=-1-5x
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}-1-\left(-1\right)=-5x
Tangohia te -1 mai i ngā taha e rua.
25x^{2}-1+1=-5x
Ko te tauaro o -1 ko 1.
25x^{2}-1+1+5x=0
Me tāpiri te 5x ki ngā taha e rua.
25x^{2}+5x=0
Tāpirihia te -1 ki te 1, ka 0.
x=\frac{-5±\sqrt{5^{2}}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 5 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2\times 25}
Tuhia te pūtakerua o te 5^{2}.
x=\frac{-5±5}{50}
Whakareatia 2 ki te 25.
x=\frac{0}{50}
Nā, me whakaoti te whārite x=\frac{-5±5}{50} ina he tāpiri te ±. Tāpiri -5 ki te 5.
x=0
Whakawehe 0 ki te 50.
x=-\frac{10}{50}
Nā, me whakaoti te whārite x=\frac{-5±5}{50} ina he tango te ±. Tango 5 mai i -5.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-10}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=0 x=-\frac{1}{5}
Kua oti te whārite te whakatau.
\left(5x\right)^{2}-1=-1-5x
Whakaarohia te \left(5x-1\right)\left(5x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
5^{2}x^{2}-1=-1-5x
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-1=-1-5x
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}-1+5x=-1
Me tāpiri te 5x ki ngā taha e rua.
25x^{2}+5x=-1+1
Me tāpiri te 1 ki ngā taha e rua.
25x^{2}+5x=0
Tāpirihia te -1 ki te 1, ka 0.
\frac{25x^{2}+5x}{25}=\frac{0}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\frac{5}{25}x=\frac{0}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}+\frac{1}{5}x=\frac{0}{25}
Whakahekea te hautanga \frac{5}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{1}{5}x=0
Whakawehe 0 ki te 25.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\left(\frac{1}{10}\right)^{2}
Whakawehea te \frac{1}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{10}. Nā, tāpiria te pūrua o te \frac{1}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{1}{100}
Pūruatia \frac{1}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{10}\right)^{2}=\frac{1}{100}
Tauwehea x^{2}+\frac{1}{5}x+\frac{1}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{10}=\frac{1}{10} x+\frac{1}{10}=-\frac{1}{10}
Whakarūnātia.
x=0 x=-\frac{1}{5}
Me tango \frac{1}{10} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}