Aromātai
\frac{66483363x}{5000}+17105847.44
Kimi Pārōnaki e ai ki x
13296.6726
Graph
Tohaina
Kua tāruatia ki te papatopenga
568+7.5978x\times 438+118\times 45.78\times 438+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438
Whakareatia te 0.21 ki te 36.18, ka 7.5978.
568+3327.8364x+118\times 45.78\times 438+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438
Whakareatia te 7.5978 ki te 438, ka 3327.8364.
568+3327.8364x+5402.04\times 438+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438
Whakareatia te 118 ki te 45.78, ka 5402.04.
568+3327.8364x+2366093.52+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438
Whakareatia te 5402.04 ki te 438, ka 2366093.52.
2366661.52+3327.8364x+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438
Tāpirihia te 568 ki te 2366093.52, ka 2366661.52.
2366661.52+3327.8364x+33638.36\times 438+5584.24+0.79x\times 28.81\times 438
Whakareatia te 532 ki te 63.23, ka 33638.36.
2366661.52+3327.8364x+14733601.68+5584.24+0.79x\times 28.81\times 438
Whakareatia te 33638.36 ki te 438, ka 14733601.68.
17100263.2+3327.8364x+5584.24+0.79x\times 28.81\times 438
Tāpirihia te 2366661.52 ki te 14733601.68, ka 17100263.2.
17105847.44+3327.8364x+0.79x\times 28.81\times 438
Tāpirihia te 17100263.2 ki te 5584.24, ka 17105847.44.
17105847.44+3327.8364x+22.7599x\times 438
Whakareatia te 0.79 ki te 28.81, ka 22.7599.
17105847.44+3327.8364x+9968.8362x
Whakareatia te 22.7599 ki te 438, ka 9968.8362.
17105847.44+13296.6726x
Pahekotia te 3327.8364x me 9968.8362x, ka 13296.6726x.
\frac{\mathrm{d}}{\mathrm{d}x}(568+7.5978x\times 438+118\times 45.78\times 438+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438)
Whakareatia te 0.21 ki te 36.18, ka 7.5978.
\frac{\mathrm{d}}{\mathrm{d}x}(568+3327.8364x+118\times 45.78\times 438+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438)
Whakareatia te 7.5978 ki te 438, ka 3327.8364.
\frac{\mathrm{d}}{\mathrm{d}x}(568+3327.8364x+5402.04\times 438+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438)
Whakareatia te 118 ki te 45.78, ka 5402.04.
\frac{\mathrm{d}}{\mathrm{d}x}(568+3327.8364x+2366093.52+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438)
Whakareatia te 5402.04 ki te 438, ka 2366093.52.
\frac{\mathrm{d}}{\mathrm{d}x}(2366661.52+3327.8364x+532\times 63.23\times 438+5584.24+0.79x\times 28.81\times 438)
Tāpirihia te 568 ki te 2366093.52, ka 2366661.52.
\frac{\mathrm{d}}{\mathrm{d}x}(2366661.52+3327.8364x+33638.36\times 438+5584.24+0.79x\times 28.81\times 438)
Whakareatia te 532 ki te 63.23, ka 33638.36.
\frac{\mathrm{d}}{\mathrm{d}x}(2366661.52+3327.8364x+14733601.68+5584.24+0.79x\times 28.81\times 438)
Whakareatia te 33638.36 ki te 438, ka 14733601.68.
\frac{\mathrm{d}}{\mathrm{d}x}(17100263.2+3327.8364x+5584.24+0.79x\times 28.81\times 438)
Tāpirihia te 2366661.52 ki te 14733601.68, ka 17100263.2.
\frac{\mathrm{d}}{\mathrm{d}x}(17105847.44+3327.8364x+0.79x\times 28.81\times 438)
Tāpirihia te 17100263.2 ki te 5584.24, ka 17105847.44.
\frac{\mathrm{d}}{\mathrm{d}x}(17105847.44+3327.8364x+22.7599x\times 438)
Whakareatia te 0.79 ki te 28.81, ka 22.7599.
\frac{\mathrm{d}}{\mathrm{d}x}(17105847.44+3327.8364x+9968.8362x)
Whakareatia te 22.7599 ki te 438, ka 9968.8362.
\frac{\mathrm{d}}{\mathrm{d}x}(17105847.44+13296.6726x)
Pahekotia te 3327.8364x me 9968.8362x, ka 13296.6726x.
13296.6726x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
13296.6726x^{0}
Tango 1 mai i 1.
13296.6726\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
13296.6726
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}