Whakaoti mō x
x=10
x=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(10+x\right)\left(500-10x\right)=8000
Tangohia te 40 i te 50, ka 10.
5000+400x-10x^{2}=8000
Whakamahia te āhuatanga tuaritanga hei whakarea te 10+x ki te 500-10x ka whakakotahi i ngā kupu rite.
5000+400x-10x^{2}-8000=0
Tangohia te 8000 mai i ngā taha e rua.
-3000+400x-10x^{2}=0
Tangohia te 8000 i te 5000, ka -3000.
-10x^{2}+400x-3000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-400±\sqrt{400^{2}-4\left(-10\right)\left(-3000\right)}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 400 mō b, me -3000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-400±\sqrt{160000-4\left(-10\right)\left(-3000\right)}}{2\left(-10\right)}
Pūrua 400.
x=\frac{-400±\sqrt{160000+40\left(-3000\right)}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-400±\sqrt{160000-120000}}{2\left(-10\right)}
Whakareatia 40 ki te -3000.
x=\frac{-400±\sqrt{40000}}{2\left(-10\right)}
Tāpiri 160000 ki te -120000.
x=\frac{-400±200}{2\left(-10\right)}
Tuhia te pūtakerua o te 40000.
x=\frac{-400±200}{-20}
Whakareatia 2 ki te -10.
x=-\frac{200}{-20}
Nā, me whakaoti te whārite x=\frac{-400±200}{-20} ina he tāpiri te ±. Tāpiri -400 ki te 200.
x=10
Whakawehe -200 ki te -20.
x=-\frac{600}{-20}
Nā, me whakaoti te whārite x=\frac{-400±200}{-20} ina he tango te ±. Tango 200 mai i -400.
x=30
Whakawehe -600 ki te -20.
x=10 x=30
Kua oti te whārite te whakatau.
\left(10+x\right)\left(500-10x\right)=8000
Tangohia te 40 i te 50, ka 10.
5000+400x-10x^{2}=8000
Whakamahia te āhuatanga tuaritanga hei whakarea te 10+x ki te 500-10x ka whakakotahi i ngā kupu rite.
400x-10x^{2}=8000-5000
Tangohia te 5000 mai i ngā taha e rua.
400x-10x^{2}=3000
Tangohia te 5000 i te 8000, ka 3000.
-10x^{2}+400x=3000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-10x^{2}+400x}{-10}=\frac{3000}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\frac{400}{-10}x=\frac{3000}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}-40x=\frac{3000}{-10}
Whakawehe 400 ki te -10.
x^{2}-40x=-300
Whakawehe 3000 ki te -10.
x^{2}-40x+\left(-20\right)^{2}=-300+\left(-20\right)^{2}
Whakawehea te -40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -20. Nā, tāpiria te pūrua o te -20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-40x+400=-300+400
Pūrua -20.
x^{2}-40x+400=100
Tāpiri -300 ki te 400.
\left(x-20\right)^{2}=100
Tauwehea x^{2}-40x+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{100}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-20=10 x-20=-10
Whakarūnātia.
x=30 x=10
Me tāpiri 20 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}