Aromātai
410
Tauwehe
2\times 5\times 41
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5\times 5}{2}+2\times 4\right)\times 20
Tuhia te 5\times \frac{5}{2} hei hautanga kotahi.
\left(\frac{25}{2}+2\times 4\right)\times 20
Whakareatia te 5 ki te 5, ka 25.
\left(\frac{25}{2}+8\right)\times 20
Whakareatia te 2 ki te 4, ka 8.
\left(\frac{25}{2}+\frac{16}{2}\right)\times 20
Me tahuri te 8 ki te hautau \frac{16}{2}.
\frac{25+16}{2}\times 20
Tā te mea he rite te tauraro o \frac{25}{2} me \frac{16}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{41}{2}\times 20
Tāpirihia te 25 ki te 16, ka 41.
\frac{41\times 20}{2}
Tuhia te \frac{41}{2}\times 20 hei hautanga kotahi.
\frac{820}{2}
Whakareatia te 41 ki te 20, ka 820.
410
Whakawehea te 820 ki te 2, kia riro ko 410.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}