Aromātai
-20\sqrt{3}\approx -34.641016151
Tohaina
Kua tāruatia ki te papatopenga
-70\left(\sqrt{3}\right)^{2}-25\sqrt{3}+84\sqrt{3}+30-\left(-10\sqrt{3}-3\right)\left(7\sqrt{3}-10\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5\sqrt{3}-6 ki ia tau o -14\sqrt{3}-5.
-70\times 3-25\sqrt{3}+84\sqrt{3}+30-\left(-10\sqrt{3}-3\right)\left(7\sqrt{3}-10\right)
Ko te pūrua o \sqrt{3} ko 3.
-210-25\sqrt{3}+84\sqrt{3}+30-\left(-10\sqrt{3}-3\right)\left(7\sqrt{3}-10\right)
Whakareatia te -70 ki te 3, ka -210.
-210+59\sqrt{3}+30-\left(-10\sqrt{3}-3\right)\left(7\sqrt{3}-10\right)
Pahekotia te -25\sqrt{3} me 84\sqrt{3}, ka 59\sqrt{3}.
-180+59\sqrt{3}-\left(-10\sqrt{3}-3\right)\left(7\sqrt{3}-10\right)
Tāpirihia te -210 ki te 30, ka -180.
-180+59\sqrt{3}-\left(-70\left(\sqrt{3}\right)^{2}+100\sqrt{3}-21\sqrt{3}+30\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -10\sqrt{3}-3 ki ia tau o 7\sqrt{3}-10.
-180+59\sqrt{3}-\left(-70\times 3+100\sqrt{3}-21\sqrt{3}+30\right)
Ko te pūrua o \sqrt{3} ko 3.
-180+59\sqrt{3}-\left(-210+100\sqrt{3}-21\sqrt{3}+30\right)
Whakareatia te -70 ki te 3, ka -210.
-180+59\sqrt{3}-\left(-210+79\sqrt{3}+30\right)
Pahekotia te 100\sqrt{3} me -21\sqrt{3}, ka 79\sqrt{3}.
-180+59\sqrt{3}-\left(-180+79\sqrt{3}\right)
Tāpirihia te -210 ki te 30, ka -180.
-180+59\sqrt{3}-\left(-180\right)-79\sqrt{3}
Hei kimi i te tauaro o -180+79\sqrt{3}, kimihia te tauaro o ia taurangi.
-180+59\sqrt{3}+180-79\sqrt{3}
Ko te tauaro o -180 ko 180.
59\sqrt{3}-79\sqrt{3}
Tāpirihia te -180 ki te 180, ka 0.
-20\sqrt{3}
Pahekotia te 59\sqrt{3} me -79\sqrt{3}, ka -20\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}