Whakaoti mō x (complex solution)
x=\frac{65+\sqrt{399}i}{2}\approx 32.5+9.987492178i
x=\frac{-\sqrt{399}i+65}{2}\approx 32.5-9.987492178i
Graph
Tohaina
Kua tāruatia ki te papatopenga
1000-\left(40-x\right)\left(25-x\right)=1156
Whakareatia te 40 ki te 25, ka 1000.
1000-\left(1000-65x+x^{2}\right)=1156
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 25-x ka whakakotahi i ngā kupu rite.
1000-1000+65x-x^{2}=1156
Hei kimi i te tauaro o 1000-65x+x^{2}, kimihia te tauaro o ia taurangi.
65x-x^{2}=1156
Tangohia te 1000 i te 1000, ka 0.
65x-x^{2}-1156=0
Tangohia te 1156 mai i ngā taha e rua.
-x^{2}+65x-1156=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-65±\sqrt{65^{2}-4\left(-1\right)\left(-1156\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 65 mō b, me -1156 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65±\sqrt{4225-4\left(-1\right)\left(-1156\right)}}{2\left(-1\right)}
Pūrua 65.
x=\frac{-65±\sqrt{4225+4\left(-1156\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-65±\sqrt{4225-4624}}{2\left(-1\right)}
Whakareatia 4 ki te -1156.
x=\frac{-65±\sqrt{-399}}{2\left(-1\right)}
Tāpiri 4225 ki te -4624.
x=\frac{-65±\sqrt{399}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -399.
x=\frac{-65±\sqrt{399}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-65+\sqrt{399}i}{-2}
Nā, me whakaoti te whārite x=\frac{-65±\sqrt{399}i}{-2} ina he tāpiri te ±. Tāpiri -65 ki te i\sqrt{399}.
x=\frac{-\sqrt{399}i+65}{2}
Whakawehe -65+i\sqrt{399} ki te -2.
x=\frac{-\sqrt{399}i-65}{-2}
Nā, me whakaoti te whārite x=\frac{-65±\sqrt{399}i}{-2} ina he tango te ±. Tango i\sqrt{399} mai i -65.
x=\frac{65+\sqrt{399}i}{2}
Whakawehe -65-i\sqrt{399} ki te -2.
x=\frac{-\sqrt{399}i+65}{2} x=\frac{65+\sqrt{399}i}{2}
Kua oti te whārite te whakatau.
1000-\left(40-x\right)\left(25-x\right)=1156
Whakareatia te 40 ki te 25, ka 1000.
1000-\left(1000-65x+x^{2}\right)=1156
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 25-x ka whakakotahi i ngā kupu rite.
1000-1000+65x-x^{2}=1156
Hei kimi i te tauaro o 1000-65x+x^{2}, kimihia te tauaro o ia taurangi.
65x-x^{2}=1156
Tangohia te 1000 i te 1000, ka 0.
-x^{2}+65x=1156
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+65x}{-1}=\frac{1156}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{65}{-1}x=\frac{1156}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-65x=\frac{1156}{-1}
Whakawehe 65 ki te -1.
x^{2}-65x=-1156
Whakawehe 1156 ki te -1.
x^{2}-65x+\left(-\frac{65}{2}\right)^{2}=-1156+\left(-\frac{65}{2}\right)^{2}
Whakawehea te -65, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{65}{2}. Nā, tāpiria te pūrua o te -\frac{65}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-65x+\frac{4225}{4}=-1156+\frac{4225}{4}
Pūruatia -\frac{65}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-65x+\frac{4225}{4}=-\frac{399}{4}
Tāpiri -1156 ki te \frac{4225}{4}.
\left(x-\frac{65}{2}\right)^{2}=-\frac{399}{4}
Tauwehea x^{2}-65x+\frac{4225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{65}{2}\right)^{2}}=\sqrt{-\frac{399}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{65}{2}=\frac{\sqrt{399}i}{2} x-\frac{65}{2}=-\frac{\sqrt{399}i}{2}
Whakarūnātia.
x=\frac{65+\sqrt{399}i}{2} x=\frac{-\sqrt{399}i+65}{2}
Me tāpiri \frac{65}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}