Whakaoti mō x
x=7
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
12-7x+x^{2}=12
Whakamahia te āhuatanga tuaritanga hei whakarea te 4-x ki te 3-x ka whakakotahi i ngā kupu rite.
12-7x+x^{2}-12=0
Tangohia te 12 mai i ngā taha e rua.
-7x+x^{2}=0
Tangohia te 12 i te 12, ka 0.
x^{2}-7x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -7 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±7}{2}
Tuhia te pūtakerua o te \left(-7\right)^{2}.
x=\frac{7±7}{2}
Ko te tauaro o -7 ko 7.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{7±7}{2} ina he tāpiri te ±. Tāpiri 7 ki te 7.
x=7
Whakawehe 14 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{7±7}{2} ina he tango te ±. Tango 7 mai i 7.
x=0
Whakawehe 0 ki te 2.
x=7 x=0
Kua oti te whārite te whakatau.
12-7x+x^{2}=12
Whakamahia te āhuatanga tuaritanga hei whakarea te 4-x ki te 3-x ka whakakotahi i ngā kupu rite.
-7x+x^{2}=12-12
Tangohia te 12 mai i ngā taha e rua.
-7x+x^{2}=0
Tangohia te 12 i te 12, ka 0.
x^{2}-7x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
Whakarūnātia.
x=7 x=0
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}