Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

16-x^{2}=33
Whakaarohia te \left(4+x\right)\left(4-x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
-x^{2}=33-16
Tangohia te 16 mai i ngā taha e rua.
-x^{2}=17
Tangohia te 16 i te 33, ka 17.
x^{2}=-17
Whakawehea ngā taha e rua ki te -1.
x=\sqrt{17}i x=-\sqrt{17}i
Kua oti te whārite te whakatau.
16-x^{2}=33
Whakaarohia te \left(4+x\right)\left(4-x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
16-x^{2}-33=0
Tangohia te 33 mai i ngā taha e rua.
-17-x^{2}=0
Tangohia te 33 i te 16, ka -17.
-x^{2}-17=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-17\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-17\right)}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\left(-17\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{-68}}{2\left(-1\right)}
Whakareatia 4 ki te -17.
x=\frac{0±2\sqrt{17}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -68.
x=\frac{0±2\sqrt{17}i}{-2}
Whakareatia 2 ki te -1.
x=-\sqrt{17}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{17}i}{-2} ina he tāpiri te ±.
x=\sqrt{17}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{17}i}{-2} ina he tango te ±.
x=-\sqrt{17}i x=\sqrt{17}i
Kua oti te whārite te whakatau.