(4 \times 1)+ \frac{ 1 }{ 2 } \times 3-4.7 \div 1+12 \% \times 3
Aromātai
1.16
Tauwehe
\frac{29}{5 ^ {2}} = 1\frac{4}{25} = 1.16
Tohaina
Kua tāruatia ki te papatopenga
4+\frac{1}{2}\times 3-\frac{4.7}{1}+\frac{12}{100}\times 3
Whakareatia te 4 ki te 1, ka 4.
4+\frac{3}{2}-\frac{4.7}{1}+\frac{12}{100}\times 3
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{8}{2}+\frac{3}{2}-\frac{4.7}{1}+\frac{12}{100}\times 3
Me tahuri te 4 ki te hautau \frac{8}{2}.
\frac{8+3}{2}-\frac{4.7}{1}+\frac{12}{100}\times 3
Tā te mea he rite te tauraro o \frac{8}{2} me \frac{3}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{2}-\frac{4.7}{1}+\frac{12}{100}\times 3
Tāpirihia te 8 ki te 3, ka 11.
\frac{11}{2}-4.7+\frac{12}{100}\times 3
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{11}{2}-\frac{47}{10}+\frac{12}{100}\times 3
Me tahuri ki tau ā-ira 4.7 ki te hautau \frac{47}{10}.
\frac{55}{10}-\frac{47}{10}+\frac{12}{100}\times 3
Ko te maha noa iti rawa atu o 2 me 10 ko 10. Me tahuri \frac{11}{2} me \frac{47}{10} ki te hautau me te tautūnga 10.
\frac{55-47}{10}+\frac{12}{100}\times 3
Tā te mea he rite te tauraro o \frac{55}{10} me \frac{47}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{8}{10}+\frac{12}{100}\times 3
Tangohia te 47 i te 55, ka 8.
\frac{4}{5}+\frac{12}{100}\times 3
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{4}{5}+\frac{3}{25}\times 3
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{4}{5}+\frac{3\times 3}{25}
Tuhia te \frac{3}{25}\times 3 hei hautanga kotahi.
\frac{4}{5}+\frac{9}{25}
Whakareatia te 3 ki te 3, ka 9.
\frac{20}{25}+\frac{9}{25}
Ko te maha noa iti rawa atu o 5 me 25 ko 25. Me tahuri \frac{4}{5} me \frac{9}{25} ki te hautau me te tautūnga 25.
\frac{20+9}{25}
Tā te mea he rite te tauraro o \frac{20}{25} me \frac{9}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{25}
Tāpirihia te 20 ki te 9, ka 29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}