Whakaoti mō y
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y-9=\frac{3}{5}y+\frac{3}{5}\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{5} ki te y+5.
3y-9=\frac{3}{5}y+3
Me whakakore te 5 me te 5.
3y-9-\frac{3}{5}y=3
Tangohia te \frac{3}{5}y mai i ngā taha e rua.
\frac{12}{5}y-9=3
Pahekotia te 3y me -\frac{3}{5}y, ka \frac{12}{5}y.
\frac{12}{5}y=3+9
Me tāpiri te 9 ki ngā taha e rua.
\frac{12}{5}y=12
Tāpirihia te 3 ki te 9, ka 12.
y=12\times \frac{5}{12}
Me whakarea ngā taha e rua ki te \frac{5}{12}, te tau utu o \frac{12}{5}.
y=5
Me whakakore te 12 me te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}