Whakaoti mō x
x=\frac{1}{12}\approx 0.083333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-13x+6=\left(6x+5\right)\left(x+1\right)-1
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-2 ki te 2x-3 ka whakakotahi i ngā kupu rite.
6x^{2}-13x+6=6x^{2}+11x+5-1
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x+5 ki te x+1 ka whakakotahi i ngā kupu rite.
6x^{2}-13x+6=6x^{2}+11x+4
Tangohia te 1 i te 5, ka 4.
6x^{2}-13x+6-6x^{2}=11x+4
Tangohia te 6x^{2} mai i ngā taha e rua.
-13x+6=11x+4
Pahekotia te 6x^{2} me -6x^{2}, ka 0.
-13x+6-11x=4
Tangohia te 11x mai i ngā taha e rua.
-24x+6=4
Pahekotia te -13x me -11x, ka -24x.
-24x=4-6
Tangohia te 6 mai i ngā taha e rua.
-24x=-2
Tangohia te 6 i te 4, ka -2.
x=\frac{-2}{-24}
Whakawehea ngā taha e rua ki te -24.
x=\frac{1}{12}
Whakahekea te hautanga \frac{-2}{-24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}