Whakaoti mō x (complex solution)
x=\frac{1+\sqrt{2}i}{2}\approx 0.5+0.707106781i
x=\frac{-\sqrt{2}i+1}{2}\approx 0.5-0.707106781i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-7x+2+\left(x+1\right)\left(x+2\right)=1
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-7x+2+x^{2}+3x+2=1
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
4x^{2}-7x+2+3x+2=1
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
4x^{2}-4x+2+2=1
Pahekotia te -7x me 3x, ka -4x.
4x^{2}-4x+4=1
Tāpirihia te 2 ki te 2, ka 4.
4x^{2}-4x+4-1=0
Tangohia te 1 mai i ngā taha e rua.
4x^{2}-4x+3=0
Tangohia te 1 i te 4, ka 3.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\times 3}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -4 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\times 3}}{2\times 4}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{16-48}}{2\times 4}
Whakareatia -16 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{-32}}{2\times 4}
Tāpiri 16 ki te -48.
x=\frac{-\left(-4\right)±4\sqrt{2}i}{2\times 4}
Tuhia te pūtakerua o te -32.
x=\frac{4±4\sqrt{2}i}{2\times 4}
Ko te tauaro o -4 ko 4.
x=\frac{4±4\sqrt{2}i}{8}
Whakareatia 2 ki te 4.
x=\frac{4+4\sqrt{2}i}{8}
Nā, me whakaoti te whārite x=\frac{4±4\sqrt{2}i}{8} ina he tāpiri te ±. Tāpiri 4 ki te 4i\sqrt{2}.
x=\frac{1+\sqrt{2}i}{2}
Whakawehe 4+4i\sqrt{2} ki te 8.
x=\frac{-4\sqrt{2}i+4}{8}
Nā, me whakaoti te whārite x=\frac{4±4\sqrt{2}i}{8} ina he tango te ±. Tango 4i\sqrt{2} mai i 4.
x=\frac{-\sqrt{2}i+1}{2}
Whakawehe 4-4i\sqrt{2} ki te 8.
x=\frac{1+\sqrt{2}i}{2} x=\frac{-\sqrt{2}i+1}{2}
Kua oti te whārite te whakatau.
3x^{2}-7x+2+\left(x+1\right)\left(x+2\right)=1
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-7x+2+x^{2}+3x+2=1
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
4x^{2}-7x+2+3x+2=1
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
4x^{2}-4x+2+2=1
Pahekotia te -7x me 3x, ka -4x.
4x^{2}-4x+4=1
Tāpirihia te 2 ki te 2, ka 4.
4x^{2}-4x=1-4
Tangohia te 4 mai i ngā taha e rua.
4x^{2}-4x=-3
Tangohia te 4 i te 1, ka -3.
\frac{4x^{2}-4x}{4}=-\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{3}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-x=-\frac{3}{4}
Whakawehe -4 ki te 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{3}{4}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{-3+1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=-\frac{1}{2}
Tāpiri -\frac{3}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=-\frac{1}{2}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{2}i}{2} x-\frac{1}{2}=-\frac{\sqrt{2}i}{2}
Whakarūnātia.
x=\frac{1+\sqrt{2}i}{2} x=\frac{-\sqrt{2}i+1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}