Whakaoti mō x
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-x-10=14
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+5 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-x-10-14=0
Tangohia te 14 mai i ngā taha e rua.
3x^{2}-x-24=0
Tangohia te 14 i te -10, ka -24.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-24\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -1 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-24\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 3}
Whakareatia -12 ki te -24.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 3}
Tāpiri 1 ki te 288.
x=\frac{-\left(-1\right)±17}{2\times 3}
Tuhia te pūtakerua o te 289.
x=\frac{1±17}{2\times 3}
Ko te tauaro o -1 ko 1.
x=\frac{1±17}{6}
Whakareatia 2 ki te 3.
x=\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{1±17}{6} ina he tāpiri te ±. Tāpiri 1 ki te 17.
x=3
Whakawehe 18 ki te 6.
x=-\frac{16}{6}
Nā, me whakaoti te whārite x=\frac{1±17}{6} ina he tango te ±. Tango 17 mai i 1.
x=-\frac{8}{3}
Whakahekea te hautanga \frac{-16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{8}{3}
Kua oti te whārite te whakatau.
3x^{2}-x-10=14
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+5 ki te x-2 ka whakakotahi i ngā kupu rite.
3x^{2}-x=14+10
Me tāpiri te 10 ki ngā taha e rua.
3x^{2}-x=24
Tāpirihia te 14 ki te 10, ka 24.
\frac{3x^{2}-x}{3}=\frac{24}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{1}{3}x=\frac{24}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{1}{3}x=8
Whakawehe 24 ki te 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=8+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{3}x+\frac{1}{36}=8+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{289}{36}
Tāpiri 8 ki te \frac{1}{36}.
\left(x-\frac{1}{6}\right)^{2}=\frac{289}{36}
Tauwehea x^{2}-\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{6}=\frac{17}{6} x-\frac{1}{6}=-\frac{17}{6}
Whakarūnātia.
x=3 x=-\frac{8}{3}
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}