Whakaoti mō x
x=-1
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}-6x-8=7
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+2 ki te 3x-4 ka whakakotahi i ngā kupu rite.
9x^{2}-6x-8-7=0
Tangohia te 7 mai i ngā taha e rua.
9x^{2}-6x-15=0
Tangohia te 7 i te -8, ka -15.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-15\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -6 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-15\right)}}{2\times 9}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\left(-15\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{36+540}}{2\times 9}
Whakareatia -36 ki te -15.
x=\frac{-\left(-6\right)±\sqrt{576}}{2\times 9}
Tāpiri 36 ki te 540.
x=\frac{-\left(-6\right)±24}{2\times 9}
Tuhia te pūtakerua o te 576.
x=\frac{6±24}{2\times 9}
Ko te tauaro o -6 ko 6.
x=\frac{6±24}{18}
Whakareatia 2 ki te 9.
x=\frac{30}{18}
Nā, me whakaoti te whārite x=\frac{6±24}{18} ina he tāpiri te ±. Tāpiri 6 ki te 24.
x=\frac{5}{3}
Whakahekea te hautanga \frac{30}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{18}{18}
Nā, me whakaoti te whārite x=\frac{6±24}{18} ina he tango te ±. Tango 24 mai i 6.
x=-1
Whakawehe -18 ki te 18.
x=\frac{5}{3} x=-1
Kua oti te whārite te whakatau.
9x^{2}-6x-8=7
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+2 ki te 3x-4 ka whakakotahi i ngā kupu rite.
9x^{2}-6x=7+8
Me tāpiri te 8 ki ngā taha e rua.
9x^{2}-6x=15
Tāpirihia te 7 ki te 8, ka 15.
\frac{9x^{2}-6x}{9}=\frac{15}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{6}{9}\right)x=\frac{15}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{2}{3}x=\frac{15}{9}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{3}x=\frac{5}{3}
Whakahekea te hautanga \frac{15}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
Tāpiri \frac{5}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{3}\right)^{2}=\frac{16}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{4}{3} x-\frac{1}{3}=-\frac{4}{3}
Whakarūnātia.
x=\frac{5}{3} x=-1
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}