Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(384x-0\right)\left(3x+4\right)=30
Whakareatia te 0 ki te 48, ka 0.
3\left(384x-0\right)x+4\left(384x-0\right)=30
Whakamahia te āhuatanga tohatoha hei whakarea te 384x-0 ki te 3x+4.
3\left(384x-0\right)x+4\left(384x-0\right)-30=0
Tangohia te 30 mai i ngā taha e rua.
3\times 384xx+4\times 384x-30=0
Whakaraupapatia anō ngā kīanga tau.
3\times 384x^{2}+4\times 384x-30=0
Whakareatia te x ki te x, ka x^{2}.
1152x^{2}+1536x-30=0
Whakareatia te 3 ki te 384, ka 1152. Whakareatia te 4 ki te 384, ka 1536.
x=\frac{-1536±\sqrt{1536^{2}-4\times 1152\left(-30\right)}}{2\times 1152}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1152 mō a, 1536 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1536±\sqrt{2359296-4\times 1152\left(-30\right)}}{2\times 1152}
Pūrua 1536.
x=\frac{-1536±\sqrt{2359296-4608\left(-30\right)}}{2\times 1152}
Whakareatia -4 ki te 1152.
x=\frac{-1536±\sqrt{2359296+138240}}{2\times 1152}
Whakareatia -4608 ki te -30.
x=\frac{-1536±\sqrt{2497536}}{2\times 1152}
Tāpiri 2359296 ki te 138240.
x=\frac{-1536±96\sqrt{271}}{2\times 1152}
Tuhia te pūtakerua o te 2497536.
x=\frac{-1536±96\sqrt{271}}{2304}
Whakareatia 2 ki te 1152.
x=\frac{96\sqrt{271}-1536}{2304}
Nā, me whakaoti te whārite x=\frac{-1536±96\sqrt{271}}{2304} ina he tāpiri te ±. Tāpiri -1536 ki te 96\sqrt{271}.
x=\frac{\sqrt{271}}{24}-\frac{2}{3}
Whakawehe -1536+96\sqrt{271} ki te 2304.
x=\frac{-96\sqrt{271}-1536}{2304}
Nā, me whakaoti te whārite x=\frac{-1536±96\sqrt{271}}{2304} ina he tango te ±. Tango 96\sqrt{271} mai i -1536.
x=-\frac{\sqrt{271}}{24}-\frac{2}{3}
Whakawehe -1536-96\sqrt{271} ki te 2304.
x=\frac{\sqrt{271}}{24}-\frac{2}{3} x=-\frac{\sqrt{271}}{24}-\frac{2}{3}
Kua oti te whārite te whakatau.
\left(384x-0\right)\left(3x+4\right)=30
Whakareatia te 0 ki te 48, ka 0.
3\left(384x-0\right)x+4\left(384x-0\right)=30
Whakamahia te āhuatanga tohatoha hei whakarea te 384x-0 ki te 3x+4.
3\times 384xx+4\times 384x=30
Whakaraupapatia anō ngā kīanga tau.
3\times 384x^{2}+4\times 384x=30
Whakareatia te x ki te x, ka x^{2}.
1152x^{2}+1536x=30
Whakareatia te 3 ki te 384, ka 1152. Whakareatia te 4 ki te 384, ka 1536.
\frac{1152x^{2}+1536x}{1152}=\frac{30}{1152}
Whakawehea ngā taha e rua ki te 1152.
x^{2}+\frac{1536}{1152}x=\frac{30}{1152}
Mā te whakawehe ki te 1152 ka wetekia te whakareanga ki te 1152.
x^{2}+\frac{4}{3}x=\frac{30}{1152}
Whakahekea te hautanga \frac{1536}{1152} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 384.
x^{2}+\frac{4}{3}x=\frac{5}{192}
Whakahekea te hautanga \frac{30}{1152} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{5}{192}+\left(\frac{2}{3}\right)^{2}
Whakawehea te \frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{3}. Nā, tāpiria te pūrua o te \frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{5}{192}+\frac{4}{9}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{271}{576}
Tāpiri \frac{5}{192} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{3}\right)^{2}=\frac{271}{576}
Tauwehea x^{2}+\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{271}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{3}=\frac{\sqrt{271}}{24} x+\frac{2}{3}=-\frac{\sqrt{271}}{24}
Whakarūnātia.
x=\frac{\sqrt{271}}{24}-\frac{2}{3} x=-\frac{\sqrt{271}}{24}-\frac{2}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.