Aromātai
\frac{27}{2}=13.5
Tauwehe
\frac{3 ^ {3}}{2} = 13\frac{1}{2} = 13.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{38+25+25+25+2+2+2+1+15}{10}
Tāpirihia te 3 ki te 35, ka 38.
\frac{63+25+25+2+2+2+1+15}{10}
Tāpirihia te 38 ki te 25, ka 63.
\frac{88+25+2+2+2+1+15}{10}
Tāpirihia te 63 ki te 25, ka 88.
\frac{113+2+2+2+1+15}{10}
Tāpirihia te 88 ki te 25, ka 113.
\frac{115+2+2+1+15}{10}
Tāpirihia te 113 ki te 2, ka 115.
\frac{117+2+1+15}{10}
Tāpirihia te 115 ki te 2, ka 117.
\frac{119+1+15}{10}
Tāpirihia te 117 ki te 2, ka 119.
\frac{120+15}{10}
Tāpirihia te 119 ki te 1, ka 120.
\frac{135}{10}
Tāpirihia te 120 ki te 15, ka 135.
\frac{27}{2}
Whakahekea te hautanga \frac{135}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}