(3+2 \sqrt{ 2 } )(3-2 \sqrt{ 2 } )(3+2 \sqrt{ 2 } -3+2 \sqrt{ 2 } =
Aromātai
4\sqrt{2}\approx 5.656854249
Pātaitai
5 raruraru e ōrite ana ki:
(3+2 \sqrt{ 2 } )(3-2 \sqrt{ 2 } )(3+2 \sqrt{ 2 } -3+2 \sqrt{ 2 } =
Tohaina
Kua tāruatia ki te papatopenga
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(2\sqrt{2}+2\sqrt{2}\right)
Tangohia te 3 i te 3, ka 0.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\times 4\sqrt{2}
Pahekotia te 2\sqrt{2} me 2\sqrt{2}, ka 4\sqrt{2}.
\left(9-6\sqrt{2}+6\sqrt{2}-4\left(\sqrt{2}\right)^{2}\right)\times 4\sqrt{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3+2\sqrt{2} ki ia tau o 3-2\sqrt{2}.
\left(9-4\left(\sqrt{2}\right)^{2}\right)\times 4\sqrt{2}
Pahekotia te -6\sqrt{2} me 6\sqrt{2}, ka 0.
\left(9-4\times 2\right)\times 4\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
\left(9-8\right)\times 4\sqrt{2}
Whakareatia te -4 ki te 2, ka -8.
1\times 4\sqrt{2}
Tangohia te 8 i te 9, ka 1.
4\sqrt{2}
Whakareatia te 1 ki te 4, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}