Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+4x-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\times 3\left(-2\right)}}{2\times 3}
Pūrua 4.
x=\frac{-4±\sqrt{16-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-4±\sqrt{16+24}}{2\times 3}
Whakareatia -12 ki te -2.
x=\frac{-4±\sqrt{40}}{2\times 3}
Tāpiri 16 ki te 24.
x=\frac{-4±2\sqrt{10}}{2\times 3}
Tuhia te pūtakerua o te 40.
x=\frac{-4±2\sqrt{10}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{10}-4}{6}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{10}}{6} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{10}.
x=\frac{\sqrt{10}-2}{3}
Whakawehe -4+2\sqrt{10} ki te 6.
x=\frac{-2\sqrt{10}-4}{6}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{10}}{6} ina he tango te ±. Tango 2\sqrt{10} mai i -4.
x=\frac{-\sqrt{10}-2}{3}
Whakawehe -4-2\sqrt{10} ki te 6.
3x^{2}+4x-2=3\left(x-\frac{\sqrt{10}-2}{3}\right)\left(x-\frac{-\sqrt{10}-2}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-2+\sqrt{10}}{3} mō te x_{1} me te \frac{-2-\sqrt{10}}{3} mō te x_{2}.