Whakaoti mō x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x\right)^{2}-1=12x-10
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
2^{2}x^{2}-1=12x-10
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-1=12x-10
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-1-12x=-10
Tangohia te 12x mai i ngā taha e rua.
4x^{2}-1-12x+10=0
Me tāpiri te 10 ki ngā taha e rua.
4x^{2}+9-12x=0
Tāpirihia te -1 ki te 10, ka 9.
4x^{2}-12x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -12 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
Whakareatia -16 ki te 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
Tāpiri 144 ki te -144.
x=-\frac{-12}{2\times 4}
Tuhia te pūtakerua o te 0.
x=\frac{12}{2\times 4}
Ko te tauaro o -12 ko 12.
x=\frac{12}{8}
Whakareatia 2 ki te 4.
x=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\left(2x\right)^{2}-1=12x-10
Whakaarohia te \left(2x-1\right)\left(2x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
2^{2}x^{2}-1=12x-10
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-1=12x-10
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-1-12x=-10
Tangohia te 12x mai i ngā taha e rua.
4x^{2}-12x=-10+1
Me tāpiri te 1 ki ngā taha e rua.
4x^{2}-12x=-9
Tāpirihia te -10 ki te 1, ka -9.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-3x=-\frac{9}{4}
Whakawehe -12 ki te 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=0
Tāpiri -\frac{9}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=0
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
Whakarūnātia.
x=\frac{3}{2} x=\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
x=\frac{3}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}